S

e

/

/
/

AN
AN

e

/

N

N\

N\

t

’
‘N
N
/ \
/ AN
N\
N\ /

il

Technical Report
CMU/SEI-88-TR-3
ESD-TR-88-004

Carnegie-Mellon University
Software Engineering Institute

ISTAR Evaluation

Marc H. Graham
Daniel H. Miller

July 1988

#

Technical Report

CMU/SEI-88-TR-3
ESD/TR-88-004
July 1988

ISTAR Evaluation

Marc H. Graham
Daniel H. Miller

Evaluation of Environments Project

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

This technical report was prepared for the

SEI Joint Program Office
ESD/XRS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official DoD
position. It is published in the interest of scientific and technical information
exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

M} CS%\.-;_VQ;_N

Karl Shingler
SE! Joint Program Office

This work is sponsored by the U.S. Department of Defense.

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S.
Govemment agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical
Information Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145.

Copies of this document are also available through the National Technical Information Services. For information on
ordering, please contact NTIS directly: National Technical Information Services, U.S. Department of Commerce,
Springfield, VA 22161.

ISTAR is a trademark of Imperial Software Technology Ltd., London. UNix is a registered trademark of AT&T Bell
Laboratories. Sun is a trademark of Sun Microsystems, Inc. Use of any other trademarks in this report is not intended in
any way to infringe on the rights of the trademark holder.

Table Bf Contents

1. Introduction
1.1. Summary of the Report
1.2. Description of the Method

2. Architecture

2.1. Contract Model
2.1.1. Project Organization
2.1.2. Data Organization

2.2. User Interface

2.3. Analysis
2.3.1. Contract Model
2.3.2. User Interface

3. Functional Areas
3.1. Project Management

3.1.1. Planning Process and Products
3.1.1.1. Work Breakdown Structure
3.1.1.2. Resource Management Centers
3.1.1.3. Schedules

3.1.2. Task Management
3.1.2.1. Assignment
3.1.2.2. Acceptance
3.1.2.3. Update, Cancel
3.1.2.4. Deliver

3.1.3. Tracking
3.1.3.1. Timesheets
3.1.3.2. Monitoring and Cost Control Centers

3.1.4. Quality Checklists

3.1.5. Analysis and Critique
3.1.5.1. Planning and Tracking
3.1.5.2. Accommodating Change

3.2. Configuration Management

3.2.1. Successor and Variant Control

3.2.2. User Defined Relationships

3.2.3. Problem Reporting

3.2.4. Libraries

3.2.5. Recorded System Building

3.2.6. Analysis and Critique of Configuration Management

3.3. Ada Workbench

3.3.1. Description of Ada Workbench
3.3.2. Analysis and Critique of Ada Workbench

4. Other Workbenches and Tools

4.1. UNIX/C
4.2. Pascal

NOoOrov On N = =

15
15
16

19
19
19
19
24
25
27
27
28
29
29
29
29
30
30
32
32
34
36
36
39

47

49
49
54

57
57
&7

CMU/SEI-88-TR-3

4.3. APCR
4.4. SX1

4.5. SDL

4.6. VDM

4.7. RGURGT

5. Overall Quality and User Experience
6. Conclusions
Bibliography

Appendix A. Generic Experiment Steps

A.1. Configuration Management
A.1.1. Configuration Management Experiment #1
A.1.2. Configuration Management Experiment #2
A.1.3. Configuration Management Experiment #3

A.2. Project Management
A.2.1. The Experiment Setup
A.2.2. The Customers
A.2.3. The Manager for Product Maintenance
A.2.4. The System Analyst
A.2.5. Team 1
A.2.6. Team 2
A.2.7. Team 3
A.2.8. Documentation Group
A.2.9. QA Group

A.3. Design and Coding

A.4. System Administration
A.4.1. System Management Experiment #1
A.4.2. System Management Experiment #2
A.4.3. System Management Experiment #3
A.4.4. System Management Experiment #4

Appendix B. Phase 4:
Develop Environment-Specific Experiments
B.1. Introduction
B.2. Configuration Management
B.3. Project Management
B.4. Design and Coding
B.5. System Administration

Appendix C. Phase 5
Execute Environment-Specific Experiments
C.1. Checklists
C.2. Configuration Management
C.2.1. Functionality Questions
C.2.2. Performance Questions

58
59
59
59
60

67
7
73

75
75
75
78
80
82
83
88
89
91
92
93
94
94
94
95
102
102
104
105
107

109

109
111
118
150
154

1587

158
165
165
170

CMU/SEI-88-TR-3

C.2.3. User Interface Questions
C.2.4. System Interface Questions
C.2.5. General Questions
C.3. Project Management
C.3.1. Functionality Questions
C.3.2. Performance Questions
C.3.3. User Interface Questions
C.3.4. System Interface Questions
C.4. Design and Coding
C.4.1. Functionality Questions
C.4.2. Performance Questions
C.4.3. User Interface Questions
C.4.4. System Interface Questions
C.5. System Administration
C.5.1. Functionality Questions
C.5.2. Performance Questions
C.5.3. User Interface Questions
C.5.4. System Interface Questions
C.5.5. General Questions

172
173
174

174
174
183
188
191

193
193
195
196
200
200
200
202
205
206
209

CMU/SEI-88-TR-3

CMU/SEI-88-TR-3

iv

Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 2-4:
Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 3-5:
Figure 3-6:
Figure 3-7:
Figure 3-8:
Figure 3-9:

Figure 3-10:
Figure 3-11:
Figure 3-12:
Figure 3-13:
Figure 3-14:
Figure 3-15:
Figure 3-16:
Figure 3-17:
Figure 3-18:
Figure 3-19:
Figure 3-20:
Figure 3-21:
Figure 3-22:
Figure 3-23:
Figure 3-24:
Figure 3-25:
Figure 3-26:
Figure 3-27:
Figure 3-28:
Figure 3-29:
Figure 3-30:
Figure 3-31:

Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 4-5:

List of Figures

Contracts and the Contract Hierarchy
A Summary of ISTAR Data Movement
A Framework Display
Another Framework Dispiay
Project Management in ISTAR
Work Breakdown Structure Activity View
Work Breakdown Structure Product View
Work Breakdown Structure Resource View
Estimation Tool Activity Definition
Estimation Tool Results
Resource Definition
Resource Control
Schedule Summary After Time Analysis
Task Definition
A Timesheet
Monitoring Tool Actuals Report
Successors and Variants
Version History Report for a Cl
Status Report for a Cl
Version History Report for an XI
Status Report for an XI
Users Taking a Copy of a Cl
A Display of the Reports Attached to a Cl
The Relationships Involving a Given ClI
All the Relationships Within a Contract
Example Problem Report
A Library Notification Form
A Library Scan Listing

Listing of the Elements Within a Work Area

The Filter Menu

Initial Screen for a Newly Declared Body
A Skeleton Procedure Body

A Partially Entered Procedure Body

A Compilation with Errors

The Result of Pressing HELP in Figure 3-30

The Data Model of a Contract Database

The Data Model of a Contract Database contd.

The Description of a Report
The Report Generated by Figure 4-3
The Fields on the First Line

10
13
13
20

SRRR

23
25
25
26
28
29
31
37

2888

41
41
42

8&5& KR

50
51
51
52
52
53
61
62
63
64
65

CMU/SEI-88-TR-3

Figure 4-6:
Figure A-1:
Figure A-2:

Figure A-3:
Figure A-4:
Figure A-5:
Figure A-6:
Figure A-7:
Figure A-8:
Figure A-9:

Figure A-10:
Figure A-11:
Figure A-12:
Figure A-13:
Figure A-14:

Figure C-1:
Figure C-2:
Figure C-3:
Figure C-4:

The Constraints Used in Producing Figure 4-4
Evaluation System Model

Configuration Model Resulting from Performing Steps in

Experiment #1
Version History of Ul Subsystem
Version History of CLI
Version History of SM
Customer Deliverable
Organizational Structure
Initial Global Plan
Preliminary Package Design
Object-Operation Model
Objects and Operations
Subprogram Interdependencies
Vector Multiplication Test Hamess
Matrix Multiplication Test Harness
Configuration Management Functionality Checklist
Project Management Functionality Checklist
Design and Coding Functionality Checklist

System Administration Experiment #1 Functionality
Checklist

65
76
79

84
85
85
86
86
87
96
97
98
99
100
101
158
160
162
164

vi

CMU/SEI-88-TR-3

ISTAR Evaluation

Abstract: ISTAR is an integrated project support environment produced by Im-
perial Software Technology, Ltd. This evaluation of ISTAR is intended for soft-
ware technologists considering the adoption of an integrated project support
environment. Researchers and others interested in environments and evalu-
ation methods will also benefit from this report.

1. Introduction

This report, primarily descriptive in nature, is the result of our evaluation of the integrated
project support environment ISTAR. In the report, we present a factual description of the
facilities offered by ISTAR so that readers can draw their own conclusions. We also offer
our own conclusions and opinions of ISTAR in subsections entitled "Analysis and
Critique.” A brief summary of the report and the methodology used follows.

1.1. Summary of the Report

ISTAR is a software development and project management environment that integrates
management and technical development activities. It is based on the "contract model,”
whose primary objective is that every individual in the organization know what is ex-
pected of him or her. To accomplish this, the relationships among the individuals of the
organization are modeled as contracts. Each contract has a specification of the work to
be performed under it, a person to whom it has been assigned, and a person for whom
the work is being done.

In Chapter 2 we describe the contract model both as a project management structure and
as a data storage structure. We find that the emphasis on project hygiene leads to a
strict separation of user data spaces which causes excess data storage requirements
and data movement operations. This, in tum, may make data sharing and cooperative
work more difficult. ISTAR's user interface is also described in Chapter 2. That interface
has a high degree of consistency because all user interaction is mediated through Im-
perial Software’s proprietary editor, E, which is window- and menu-oriented.

Chapter 3, which forms the bulk of the report, deals with the functional areas (that is,
those tool sets supplied with ISTAR) which were of most interest to us. The remaining
tool sets are described in Chapter 4.

ISTAR's project management tool set (ISTAR uses the term “workbench” rather than
"“tool set”) contains tools for project estimation, description, scheduling, resource alloca-
tion, and tracking. These tools are well integrated at the data level; that is, with the
exception of the estimation tool, the output of one tool feeds naturally into the next tool in
the planning cycle. They do well at tracking resources against a schedule as a project is
executed. -

The tools are not as well integrated at the tool level. This makes moving from phase to
phase unnecessarily difficult, a phenomenon which is particularly unfortunate during
replanning activities. The tools do not support group planning activities at all well and
should not be used for that purpose. The most serious criticism which can be made of
ISTAR's planning tools is that they do not react well to change, particularly change which
occurs during project execution, such as reassignment of personnel or responsibilities.

CMU/SEI-88-TR-3 1

ISTAR's configuration management support can best be described as rudimentary. There
is support for version control and little else. There is no system modeling capability as
such; there is no check in/check out paradigm; there is no support for release manage-
ment. ISTAR provides a sophisticated problem-reporting mechanism but no automated
support for tying a software module version to the problems it repairs.

The ISTAR editor, E, has a syntax-directed editing mode which facilitates the entry of
Ada source code. The editor is sensitive only to static syntax; it is not aware of semantic
constraints such as type consistency and undeciared vanables. Thus, a compilation unit
which passes the editor's syntax checks may not compile. ISTAR provides a window-
and menu-oriented front end to the Alsys Ada compiler, which is a considerable improve-
ment over the text-oriented command language of the compiler itself.

ISTAR is an emerging product, not a completed one. A software development organi-
zation wishing to introduce an integrated support environment into its operation has a
variety of implementation choices. It may decide to handcraft an environment from exist-
ing and newly developed tools, or it may acquire an environment framework upon which
to build. To our knowledge, there are no environments currently available that can be
installed and used unmodified, and it is unlikely that any such environment will appear in
the near future. An organization wishing to build on an existing framework should con-
sider ISTAR a candidate system.

1.2. Description of the Method

Our evaluation of ISTAR was guided by the environment evaluation methodology de-
scribed in [Weiderman 87]. This methodology is organized by the functional areas sup-
ported by an environment. For each functional area, an evaluation proceeds through six
phases:

1. Identify and Classify Key Activities. Activities within the area are identified,
categorized, refined, and classified into primary and secondary functions.

2. Establish Evaluative Criteria and Assoclated Questions. Specific evaluative cn-
tena are established and a list of questions evaluating each criterion is assembled.

3. Develop Generic Experiments. Environment-independent evaluation experiments
are developed whose execution on a specific environment provides data for the an-
swers to the questions developed in phase 2.

4. Develop Environment-Specific Experiments. The generic experiments developed
in phase 3 are instantiated for the object environment. The result is a sequence of
operations to be performed on the environment.

5. Execute Environment-Specific Experiments. The operations defined in phase 4
are executed. The data collected are used to answer the questions of phase 2. The
answers to those questions are the resuit.

6. Analyze Results. Information collected from the prior phases is assimilated. The
environment is described and analyzed.

2 CMU/SEI-88-TR-3

The first three of these phases are independent of any environment; the last three are
specific to the environment being analyzed. We used the results of [Weiderman 87] and
[Feiler 88] for the environment-independent phases. The functional areas addressed are:

» Project Management
» Configuration Management
» System Management

» Design and Development

To make this report self-contained, we have included as an appendix the outputs of
earlier phases of the evaluation methodology. Appendix A contains the generic experi-
ments, reproduced from [Weiderman 87] and [Feiler 88]. Appendix B contains the experi-
ments instantiated for ISTAR. We have attempted to include in that section our reason-
ing for implementing the generic steps as we did. Appendix C contains the output of
phase 5, the answers to the questions produced in phase 2. The questions are included
as well. The body of the report can be read without reference to the appendices. Only
readers with interest in details of ISTAR or the evaluation methodology need consult the
appendices.

Some of what we say in this report is specific to the ISTAR release we examined
(Release <2, 11, 3>); hence, if the reader acquires ISTAR, some of the statements in this
report may not be true of that release. However, we have generally avoided low-level
details of ISTAR and trust that the bulk of what we say will remain true for later ISTAR
releases.

CMU/SEI-88-TR-3 3

CMU/SEI-88-TR-3

2. Architecture

This chapter presents an overall description of ISTAR, concentrating on its underlying
principle—the contract model—and its user interface.

2.1. Contract Model

At the heart of ISTAR is the contract model of project organization. This model views
work assignment as the central fact in the organization and process of software devel-
opment. The goal of the model is to ensure that each member of the organization has a
well-defined set of tasks which have well-defined termination criteria.

2.1.1. Project Organization

As its name implies, a contract is an agreement between two parties about a piece of
work to be performed. The client of the contract, for whom the work is to be done, issues
the contract to a contractor who is to perform the work. A contractor may perform the
work specified in the contract by subcontracting pieces of it to other contractors. The
terms client and contractor reference roles played by individuals, rather than the in-
dividuals themselves.

The acts of contract and subcontract assignment and acceptance force the collection of
all contracts within an ISTAR installation to form a tree. (See Figure 2-1, which is adapted
from [Dowson 87].) The topology of this tree is recorded locally; that is, each contract
maintains a record of its subcontracts and of its parent contract.

Specifi_cationd Deliverables
Inputs: Reportingand ouipyts:
P Acceptance Criteria ~~ """ Reports
Contract
‘ contract
contract contract ‘
il , I
contract contract contract ' contract

Figure 2-1: Contracts and the Contract Hierarchy

CMU/SEI-88-TR-3 5

On the other hand, ISTAR does not require or even suggest a software development
methodology. The division of a contractual obligation into subcontracts can be along any
lines deemed appropriate. An individual subcontract may require the execution of a life-
cycle phase (design, coding, etc.) for the entire product; it may require the execution of
multiple phases for a piece of the product (functional decomposition). Different contracts
may be handled in different ways. The essence of a contract is that it is the contractor’s
responsibility to decide how to fulfill it, subject to any constraints imposed by the contract
specification or management directive [Dowson 87].

Although the collection of all contracts forms a tree, the mapping of that tree onto the
collection of ISTAR users is arbitrary. Any ISTAR user can assign a contract to any other
ISTAR user, including himself, at any time. ISTAR does not record the organization's
reporting or management structure except insofar as that is recorded In the contract
structure. There is no notion in ISTAR of a user’s having authority to assign contracts to
other users. Therefore, when the hierarchy of Figure 2-1 is mapped onto the individuals
within the development organization, the result is a graph of arbitrary topology. ISTAR
insists that the work be decomposed hierarchically; it does not require the development
organization to be managed hierarchically.

An ISTAR contractor receives asynchronous notification of a new contract assignment;
he or she must accept this contract without being able to read it. (No capability is pro-
vided to reject contract assignments.) Essentially, an ISTAR contract assignment is the
formal, recorded counterpart to an informal assignment of work. Communications within
or between organizations mediated by ISTAR are generally meant to supplement infor-
mal communication channels, not to replace them. The value added by ISTAR comes
from the recording of these communications. This provides a basis upon which the con-
tractor, the client, and their management can understand, discuss, and track work in
progress.

As shown in Figure 2-1, the input to a contract consists of specifications and other infor-
mation; the outputs are deliverables that fulfill the contract specifications and reports on
work in progress. All of these data flows can be incremental. A contract specification can
be updated after initial assignment; a deliverable can be transmitted in pieces over time.
Transmittal of a deliverable does not terminate a contract. Contracts can be canceled by
the client, in which case the contractor is informed of the cancellation. A contract can be
destroyed by the contractor at any time, without administrative control or intervention.
However, contracts are not meant to be destroyed. In fact, information on a project
should not be discarded, even after project termination. In order to save secondary
storage, ISTAR offers an archival facility. (This was not implemented in the version of
ISTAR which we examined.)

ISTAR makes no attempt to enforce any rules or standards on the data flows into and out
of the contract. When a contract is assigned, something must be transmitted as a specifi-
cation. When a delivery is made, something must be delivered. The identities of the
specifications and deliverables are recorded in the parent contract. Beyond this record-
ing, nothing is done to determine whether the specification is acceptable or the delivery
conforms to it. This philosophy has been called “a liberal policy, strictly enforced.” The
enforcement occurs in ISTAR'’s requiring that a specification be provided. It is worth
noting that ISTAR “freezes” the specification at the time it is transmitted, thereby making
it impossible for either party, client or contractor, to alter the specification. (This does not
affect the client's ability to update the contract with subsequent specifications, but it does
prevent the text of the original specification from being modified. These comments apply
equally to deliverables.) This philosophy is justified in the following discussion of the
support an environment should give to a software process.

Most of the processes that are currently employed within our industry would be
completely unworkable were it not for human ingenuity and flexibility. In prac-

6 CMU/SEI-88-TR-3

|

tice, people follow the ‘defined’ process until it breaks down, and then find ways
of getting round the problem. Any attempt to strictly enforce a specified process
in all its aspects is therefore likely to be counter-productive—the process will
probably emerge as unworkable [Stenning1 87].

Although ISTAR enforces no requirements on the content of specifications, it does pro-
vide tools for their construction. These tools are encapsulated in the Project Management
workbench and are fully described in a subsequent chapter of this report. They include a
software cost estimation tool, work breakdown and scheduling tools, and a resource
management tool. Through the use of these tools and a task definition tool, a client may
construct a specification that includes schedule constraints and resource lists as well as
development objectives, standards to be adhered to by the contractor, and termination
critena to be met. These termination criteria take the form of checklists which the contrac-
tor is meant to fill out, indicating that required quality assurance steps have been carried
out. The completed checklists are returned, with the deliverable, to the client. In keeping
with its philosophy, ISTAR does not verify the completion of these checklists: that must
be done by the client, who may examine the state of the checklist when it is retumed.

The Project Management workbench also contains tools for monitoring the progress of
contract fulfilment. The contractors submit time sheets which record effort and resources
(time and material) expended on the contract and an “estimated completion” percentage.
These time sheets can be summarized and sent up the contract hierarchy. The contractor
may indicate contract completion in a time sheet, but ISTAR does not verify that anything
has been delivered.

~ ISTAR supports a problem reporting mechanism which can be thought of as a method of

work assignment parallel to the contract assignment mechanism. Any ISTAR user can
raise a problem report at any time. These reports are predefined forms containing prob-
lem descriptions, sevenity, impact, etc. Problem reports have controllers, individuals who
presumably are responsible for taking corrective action. Having raised a problem report,
a user may send the report to another user, optionally passing controllership of the re-
port. In effect, the reporter has assigned work to the recipient. However, for this trans-
mission to take place, the sender must know not merely the name of the recipient, but
also the name of the contract under which the maintenance and repair work will be car-
ried out. Although the specific task has been assigned outside the contract model, the
model still controls the assignment of responsibilities, e.g., maintenance, to individuals.
The problem reporting tools have their own methods for recording completion and inform-
ing the original reporter; these are separate from the methods of time sheets and
deliverables used in contract completion. This separation recognizes that, although a
specific problem has been repaired, the maintenance activity is on-going.

2.1.2. Data Organization

We have been discussing the contract model as a means of organizing the work of a
software development organization. We will now turn to a description of the model as it
affects ISTAR's data organization and storage and its model of tool usage.

When a contract is accepted by a contractor, a new contract database is created. This
database is a large piece (actually, three pieces) of the UNIX file space which is man-
aged by ISTAR. Each contract has its own database that the contractor (the owner) alone
can modify. .

The data model of a contract database is a variant of the “binary data model” [Tsichritzis
82). Objects within the database are typed and are related to one another through named
binary relationships. Users may declare relationship (but not object) types of their own
and relate objects using these user relationships. ISTAR provides a report writing facility
with which the user may create specialized reports from the database. The description, or

CMU/SEI-88-TR-3 7

schema, of much of the data in these databases is available on line to assist in the
creation of these reports.

For the most part, however, ISTAR users need not be concerned with, nor even aware of,
the organization of the contract databases. Access to the database is usually done
through tools which encapsulate the database interface and present a higher level inter-
face to the user.

The purpose of the contract database within ISTAR is to be the repository of controlled
project knowledge. Information within a contract database is subject to version control,
may be “frozen,” and may be moved from contract to contract. When data is moved in
this way, a record is kept of that movement, making it possible to track the source of
information.

The data stored in a contract database is originally created by some other means: either
an ISTAR tool or a UNIX program. Generally, an ISTAR tool will organize and maintain
data within a special purpose work area. These work areas are specific to the tool and to
the user, but generally not to any contract. Thus, a user has access to the same infor-
mation within a work area, no matter what contract he is working on. No other user may
access that information in any way. It is as though the data within a work area is the
user's personal property, whereas the information within the contract belongs to the or-
ganization.

The user transfers information from his personal work areas to one of his contract data-
bases via an EXPORT operation.? The unit of transfer is called the transfer item, ab-
breviated XI. Each XI| has a type which identifies the tool that exported it, although some
tools can export items of more than one type. The type of X| exported by the Ada tools,
for example, will indicate whether the item is an Ada specification or an Ada body. The
typing of Xis is used to prevent importation of an item by a tool which is not prepared to
deal with it.

Within the database, transfer items are gathered into sets called configuration items,
abbreviated Cl. This gathering into sets is not recursive, in the sense that Cis may not
appear as elements of other Clis. A given XI may appear as an element of more than one
Cl.

An individual XI may contain, for example, either a single program, from the Ada or
Pascal tools, a schedule, from the scheduling tool, free text, from the text tool, or a quality
checkiist, from the quality assurance tool. ISTAR provides a mechanism whereby any
UNIX file may be exported as an Xl to a contract. The collection of Xls within a Cl will
form some logical entity: a specification for a contract, a baseline of a system, etc.

Associated with each Xl and with each Cl is a successor number and a variant name.
Any Xl or Cl may thus appear within a contract database any number of times. More
accurately, any number of Cls or Xls within a contract database may have the same
name, provided they differ in either the variant name or successor number. The collec-
tion of all instances of an XlI or Cl will form a tree, in which each root to leaf path
represents a parallel line of development and each node is a successor, or variant, of its
parent. ISTAR will track the relationships of vanation and succession that form the edges
of such a tree. ISTAR will not, however, allow variants to be merged back into a mainiine
of development. The graph must remain a tree.

"This description is based on the version of ISTAR which we examined. Future versions of ISTAR are
planned which will implement an entity-relationship data model.

2The inverse data movement is accomplished by an iIMPORT operation.

8 CMU/SEI-88-TR-3

As the Xl is the unit of transfer between the tools and the contract, the Cl is the unit of
transfer between contracts. The specification which must accompany the assignment of a
contract is a Cl, as are the deliverables retumed in fulfilment of a contract. These are not
the only mechanisms by which information may be transported between contracts. Pro-
vided that a user knows the exact name, including the successor number and variant
name,® of a Cl in another user’s database, he may issue a request, called RETRIEVE c, for
a copy of that Cl. The owner of the CI, which is to say, the owner of the database in
which the Cl is stored, must have taken action to allow such access, which is disallowed
by default. Optionally, the owner may have ISTAR record the identity of any user taking
such a copy of the Cl. These options are on a Cl-by-Cl basis.

ISTAR supports the concept of a library. Structurally, a library is a contract database.
Operationally, it serves not to record information for a specific task, but to act as a
publicly accessible repository. An ISTAR library may impiement a library of programs,
standards, regression tests, or any collection of information at the user's discretion. The
process of copying information from a library is a simplification of the process described
in the prior paragraph. ISTAR provides to the requester a list of the Cls contained in the
library. The requester “points” to the Cl he wants to copy and makes his request through
a menu selection. He thus needs less a priori knowledge of the contents of the library
then he does in the case of RETRIEVE Cl. It is worth noting that every XI and every Cl has
an associated free text description which is created when the item is created. However,
the user of the library retrieval system does not have access to that description.

There is a specialized process for entering Cls into a library. Any ISTAR user may initiate
the process by sending a notification to the owner of the library. Recall that an ISTAR
library is a contract database and thus has an owner, as does every such database. The
owner of a library effectively serves as a librarian. The librarian reads the text of the
notification, which is a predefined form containing descriptions of the item and may con-
tain information concerning the standards, quality assurance procedures, and tests which
have been applied to the item, and decides whether to accept or reject the item for
inclusion in the library. Therefore, the contents of a library are necessarily subject to
some degree of human quality control. This is consistent with ISTAR's liberal enforce-
ment policy.

A summary of the movement of data within ISTAR among contracts, work areas, and
libraries is given in Figure 2-2.

There is yet another mechanism whereby ISTAR users may share information. The
owner of a contract may elect to allow other users to share the contract. The users
sharing a contract may each access and modify its contents as though they owned it.
ISTAR ensures that no two sharers of a contract access it simultaneously. It is worthwhile
to note at this point that an ISTAR user can access an ISTAR tool only while signed on to
or working on a contract. Therefore, no two sharers of a shared contract may be working
on the contract in any way, that is, with any tools, at the same time. A user working on a
shared contract locks out other users sharing the contract for long periods of time. Those
users may, of course, work on other contracts during those periods.

The staff of Imperial Software have indicated in conversations that they do not favor the
concept of the shared contract. Indeed, the shared contract violates the principle that the
contract is an agreement on a task to be done. However, we have seen, in the library
facility, that contract databases serve functions other than that of recording purely con-
tractual information. The library is not the only example of such usage. The resource

3ISTAR recognizes two symbolic successor numbers: #L (latest) and #P (preferred). These may lower the
burden of knowledge on the user in this context.

CMU/SEI-88-TR-3 9

client contract

tool work area

Ci k;gj
assign deliver
contract contract
o
X export
E(retrieve ci = i import(N

Cl

|7C§I_|

notify

library

scan

il

Cl

Figure 2-2: A Summary of ISTAR Data Movement

10

CMU/SEI-88-TR-3

management tools, used in project planning and management, store information concern-
ing resource usage and availability in contract databases called resource management
centers or RMCs. These RMCs are, like libraries, repositories of publicly available infor-
mation and, like libraries, have individual owners, called resource managers.

We have been unable to determine with precision Imperial Software's motivation for in-
cluding shared contracts, but it would appear to have been done at customer demand.
The sharing of information through shared contracts can be simpler and quicker than the
other methods previously described. ISTAR's locking mechanism for shared contracts
makes that sharing somewhat less effective. We do not have enough knowledge or expe-
rience to have formed an opinion on the issue of shared contracts.

The databases, work areas, and ancillary files in which ISTAR stores its data are organ-
ized into a higher level structure, known by the names datatree and host. The name
“datatree” conveys an accurate impression of the structure of these objects; they are
subtrees of the UNIX file space. Each ISTAR user has a subtree of the datatree within
which his databases and work areas appear as files and subtrees. ISTAR prevents ac-
cess to the datatree by non-ISTAR programs by creating fictitious owners for the files
within the tree and preventing non-owner access through the UNIX file protection
mechanisms.

The term "host” conveys an accurate impression of the intended use of these structures;
they are used in the support of distributed operations. There is nothing to prevent an
individual UNIX file space from containing more than one datatree. A user specifies the
identity of his or her datatree through an environment variable which may be set by
appropriate shell or login procedures. However, the essential purpose of the host or
datatree construct is to implement inter-machine communication.

ISTAR allows its system administrator to specify the mechanism by which communication
between a given host and any other is to be accomplished. This mechanism can be any
UNIX program. This general mechanism can support local and wide area networks, e-
mail or other file transfer protocols, or physical transport using magnetic tape. ISTAR
users within different companies can use the ISTAR communication facilities. The au-
thors have used them to communicate with Imperial Software. Such communication is
possible only if the companies have agreed to use ISTAR communication facilities, have
determined the protocols to be used, and know the names of each other's hosts.

The specification, from the user's perspective, of inter-host communication is not identical
to that for intra-host communication, but the differences are minor. When doing contract
assignment or inter-contractual data movement, the user must specify the target host
name, if it is not the local host. For contract delivery, the identity of the parent contract is
locally recorded, so this information is unnecessary. The specialized procedures for
library retrieval described earlier are not available when the library is remotely stored, and
so the requester must have complete information concerning the identity of the requested
item. These differences are not significant and not unexpected. ISTAR does not maintain
a user-datatree mapping function. Maintenance of such a map might require inter-
organizational cooperation, in the area of user name assignment in particular, that may
not be desirable.

The inter-contractual information transfer mechanisms within ISTAR have been designed
with remote communication in mind. For example, the request a user makes for infor-
mation from a library, as described earlier, does not effect the transfer directly, even in
the intra-host case. The transfer is done by a background process or demon,
asynchronously. The requester is notified when the transfer is complete and must then
install the item in his database via a separate operation. The delay involved in these
operations is unavoidable for remote communication, but annoying in the local case. In
our own experiments, in which only local communication occurred, we found the transfer
occurred quickly.

CMU/SEI-88-TR-3 11

2.2. User Interface

ISTAR presents its users with a uniform user interface in the sense that every tool and
interface expects input and returns output in roughly similar ways. ISTAR accomplishes
this by having all user communication done through its proprietary editor, called “E.”
This editor and the interface it presents is the subject of the following section.

The interface is modeled on the capability of a DEC VT100. It can therefore be used with
any device capable of emulating such a terminal. Imperial Software has also imple-
mented a version of the interface under SunTools. The additional features of that imple-
mentation are noted as appropriate. The editor is configurable at the level of key bind-
ings, thereby accommodating the differing interpretations of the function keys on various
terminals. This feature can also be used to make the editor more nearly resemble an
editor with which the user may be previously familiar. We have ourselves used it in that
way.

The interface is window- and menu-oriented. The display may contain any number of
windows simultaneously. These windows can serve various purposes. Some of them
contain menus. A user selects a menu item by positioning the cursor at the item, using
the cursor movement keys, and entering either a carriage return or space. Alternatively,
the user can move the cursor directly to the menu item by entering its first character, a
system which works less well for menus in which multiple items have the same initial
character. Because menu interaction, like all other interaction, is under the control of the
editor, the editor’'s positioning commands (e.g., “bottom of file” for selecting the last item
in a menu) are available. Menu interaction is identical for all tools, as they all use the
editor to accomplish it. In the SunTools implementation, cursor positioning, and item se-
lection can be done directly with the mouse.

In addition to windows, the display also contains a command line. (It will generally also
contain an area reserved for the display of system status information.) Much of menu
interaction results in the execution of a command, either by the editor or the tool. Many of
these commands can also be entered on the command line, which a knowledgeable
ISTAR user may prefer, particularly when the menu interaction requires multiple level of
submenus. There is a powerful abbreviation mechanism available for the command line
and a history mechanism as well.

Figure 2-3 contains an example ISTAR screen. This particular screen is displayed by the
ISTAR framework. The framework is the highest level of control in ISTAR, which the
user enters after logging on to ISTAR. The command line appears at the top of the
display, at the point where the “greater than” sign (>) appears. The narrow window di-
rectly below is the initial menu. In the example, the user has selected the contract opera-
tion from that window, which displayed the large window in the lower right of the screen;
this window contains a list of the user's contracts. The user has selected and opened
one of those contracts (CMEXP), resulting in the display of the menu on the lower left of
the screen. Selection of the workbench operation in that menu produces the display
shown in Figure 2-4. The new pop-up menu shown there lists the workbenches currently
available in ISTAR. Workbenches are collections of related tools and their local work
areas. All work in ISTAR is performed in workbenches which are initiated through this
menu. As the display indicates, workbenches are accessible only through an open con-
tract. Therefore, all work done by ISTAR users is necessarily done for some contract.

Some of the windows popped up by ISTAR contain forms. These are created and manip-
ulated by the ISTAR editor. The ISTAR tool set contains tools for the creation of form
templates, the descriptions of forms. Therefore, the forms system is directly available to
ISTAR tool builders.

12 CMU/SEI-88-TR-3

TSTAP (ISTA®_2,10.1) T3
b
,]
| USER: marc HOST: cmexp SESSION STARTED AT 10:3¢ [+ rsonal db occupancy h
| contrace adnin nail 1ogour ~ g
| CONTRACT: CHEXP @53 full) | | CURRENT CONTRACTS: K
|Morkbench ops starus close | | CHEXP neu rransfer(s)
| | | CHEXP2
| | | CHEXP4
| | | |
| | |
I | |
| | I
) l
|
|
|
|
|
|

Figure 2-3: A Framework Dispiay

ISTAR (ISTR2_2.10.1)

*
+
B
»e

| USER: marc HOST: cmexp SESSION STARTED AT 10:3¢ (2% personal db occupancy)
| contract adnin mail 1 ogout

| CONTRACT: CHEXP @52 fulld | | CURRENT CONTRRCTS:

1 close | CHEXP new transfer(s)
| 1R general | | CHEXP2

|1 technical development | | CHEXP4

|| configuration managsnent | |

|| Project management | |

|1 resource management | |

11 QR nanagement | |

t| tool development e

Figure 2-4: Another Framework Display

As the name implies, forms are electronic representations of paper forms. They have
fields containing constant information, for display purposes only, and fields containing
user modifiable information. For such fields, the form designer can specify a prompt
string which the editor will display when the form user is entering information into the
field. This string can be used by the designer to convey a brief description of the meaning
and purpose of the information to be entered into the field. The forms system inciudes a
validation capability for information entered into form fields. This takes the form of a
regular expression match. The form designer can specify an error string to be displayed
by the editor when the user enters information which does not conform to the reguiar
expression. The designer can, optionally, have the validation strictly enforced, in which
case the user will not be allowed to leave a field containing non-conforming data. If this
option has not been chosen, the ISTAR allows the user to leave such data in a fieid, but
displays the error message.

All ISTAR tools use the forms system for capturing parameters to commands. This in-
cludes such things as the names of Xls for transport between a work area and a contract,
for example. Some tools use it for the entry of structured data of larger volume than
command parameters. The use of this system by all tools provides a high degree of
consistency to ISTAR in this regard.

CMU/SEI-88-TR-3 13

The ISTAR editor can also act as a general purpose, syntax-directed editor. ISTAR
uses the editor in this way in the Ada workbench, among others. The language in which
the syntax is written is documented and available to the ISTAR tool builder. It is an
extension of the well known BNF (Backus Naur Form) notation for describing program-
ming languages. The most important extensions are “layout directives,” which describe
and control the appearance of the document. Thus, an Ada program edited in this way
will always be “pretty printed.”

A syntactic document, that is, one using syntax-directed editing, may contain “stubs,”
generated by the editor that stand for syntactic categories. For example, the empty
Pascal program will appear as the stub program. The user replaces the stub with text
and the editor ensures that the replacement conforms to the appropriate category. The
user may enter part of a syntactic element. For example, he may replace the stub
statement with the term for and the editor will automatically supply the concrete syntax
and stubs making up a for-loop. The editor can also “fold” a syntactic construct, replacing
the text with the stub.# This can be useful for program scanning.

The syntax direction supplied by the ISTAR editor in this mode is limited to that which can
be described in BNF. This limitation can be called “static syntax”; it is the syntax which
can be checked locally. Items such as variable declarations and type constraints do not
fall in this category. Therefore, a program entered in this way may not conform to the
language and may not compile without error.

Many of the functions of the editor are bound to function keys. The exact set of func-
tions so bound varies from terminal to terminal. In the Sun implementation used in this
experiment, the functions bound to function keys include some used in form and syntax-
editing, as well as frequently used functions of simple text editing. The availability of
these functions on keys was extremely useful.

The most frequently used and useful of the functions are, in the Sun case, bound to the
top row of keys.> The utility of these keys is such that they are worth discussing in-
dividually.

¢ POP. This key is used to discard windows. It is particularly useful for aborting inter-
actions in midstream.

¢ WIDE. This key is used to control the size of windows.

e LOCAL and HOUSEKEEPING. These keys cause the display of menus of commands. The
contents of these menus depend upon the context in which the keys are pressed. The
housekeeping menu contains commands specific to a given workbench. No matter
what the user is doing within in any tool of the workbench, this menu's display
remains constant. The menu varies from workbench to workbench. Generally, the
command to exit the workbench appears in the housekeeping menu.

The commands in the local menu vary with the tool being used. The commands are
also specific to the state of the user's interaction with the tool. For example, in the

component management tool, which is concerned with the elements of a contract:

database, the local menu contains a command to create a new Cl when the inter-
action is in a state in which no Cl| has been selected. In a state in which a Cl has

“The difference between a folded construct and one which has not yet been entered is made clear on the
display.

Sin the SunTool case, these appear as mouse selectable buttons on the display. They are also available as
escape sequences, even on terminals without function kays.

14 CMU/SEI-88-TR-3

been selected, the local menu contains a command to create a successor of the
selected ClI.

¢ HELP. This key invokes the context-sensitive help system.

® VALIDSET. This key is used for filling in form fields. It causes the display of a menu
containing items which can validly be entered into the field. For exampie, during the
specification of an import operation, the VALIDSET key will display a list of all Xls which
can be imported from the contract into the work area. The user may use menu selec-
tion techniques to select an item from this list.

* CONTEXT. The project management tools use this key to switch between different
views of their database. For example, the structure of a product within an activity can
be displayed by focusing on the product (that is, moving the cursor to it) and pressing
the CONTEXT key.

2.3. Analysis

An analysis of ISTAR's contract model and user interface follows.

2.3.1. Contract Model

The contract model is designed so that each user operates within an environment that
cannot be changed without his knowledge and acquiescence. Furthermore, this environ-
ment (which is to say, the information available to the user and the names by which that
information is known) is organized, in part, according to the tasks the user performs. The
organization which implements this strategy leads to a degree of fragmentation which has
unfortunate consequences.

For example, an Ada programmer creates compilation units within the Ada workbench.
The name of the compilation unit, within the workbench, is identical to the Ada name of
the compilation unit. The workbench’s work area is completely private to the user, so in
order to make the compilation unit publicly available, he must export it to a contract
database. This causes a copy of the unit to be made. The syntax of names within a
contract database does not conform to Ada name syntax. Thus the unit is likely to have a
different name when exported. The date and time of the export is recorded in the contract
database, but it is not recorded in the workbench. It is relatively easy for the work area
version and the database version of the unit to diverge inadvertently. The fact that ver-
sion control is available only for items in the contract database makes it more difficult for
an Ada programmer to work on several versions of a system simultaneously® or to pro-
duce experimental versions of a unit. In order to use the version control facilities, the
programmer must pay the penalty of exporting and importing. The division of an indi-
vidual user's storage into contracts and work areas results in excess data storage, ex-
cess data movement, and an excessively large name space.

The same can be said of the separation of the individual user's storage from each
other's. The sharing of information becomes more difficult. Recall that all work in ISTAR
is done within work areas which can be accessed solely by their owners. For control of a
product or document to be transferred from one user to another, the following steps must
be taken: The owner of the item must export it to a contract database and must make the
item publicly accessible. The owner must inform the recipient of its name and location.

Sin the case of Ada, variants of a system will need separate Ada libraries. The ISTAR Ada workbench
supports that concept rather well.-

CMU/SEI-88-TR-3 15

The recipient must then issue a request for a copy of the item, and then wait for the copy
operation to take place.” The recipient must then install the item into one of his contract
databases and, finally, export the item into the appropriate work area. The recipient is
now able to begin work on it.

In the case of local transfer, that is, within the same ISTAR host, the above steps take
very little time. There is, however, a good deal of manual intervention and of data replica-
tion involved. In the case of remote transfer, much of that intervention, and certainly the
data replication, is unavoidable. Local transfer would seem to be much more prevalent.

The separation of users’ storage has an effect on global project knowledge. In the above
scenario, the fact of the transfer will be recorded in the recipient’'s database, as a prop-
erty of the transferred item. Optionally, the original owner may have that fact recorded in
his or her database as well. Suppose that item must be forwarded to a third user. As it
turns out, ISTAR does not record the identity of the original owner in the new recipient’s
database. The history of movement of this item, and of its modifications at each location
as given by the version trees, is recorded by the system as a whole. It cannot, however,
automatically be gathered into a single location or report. This is because each contract
is accessible only by its owner. No report, including those defined by the users, can
access databases owned by anyone other than the person running the report. This
makes the production of ad hoc, user-defined management reports difficult if not impos-
sible to accomplish.

The ISTAR model works best when a development project is well planned in advance
and the resulting plan is executed without modification. Planning is certainly a vital com-
ponent of successful development projects; however, few plans, particularly for large
projects, are ever executed without modification. Unforeseen events necessitate re-
planning. Engineers often find their responsibilities change in mid-course. This may not
be desirable, but it is often unavoidable. The scenarios just described are realistic imple-
mentations of such mid-course changes in ISTAR.

2.3.2. User Interface

We have described the consistency of the ISTAR user interface. We must also describe
the interface’s inconsistencies. These are annoying, but not inimical to the successful use
of ISTAR. The claim that ISTAR has a consistent user interface is justifiable. Still, the
inconsistencies are worth reporting.

The presence of two function menu pop-up keys, the “local” and “housekeeping” keys
described earlier, has unwanted side effects. We found that the we frequently forgot in
which of these menus, or their submenus, a given operation was to be found.

We have reported that many of the commands available from menus are also available
on the command line. Not all such commands are so available and it is frequently impos-
sible to guess which are and which are not. Also, the same command is handled differ-
ently in different tools.

The validset and help keys are not implemented everywhere they might be. This is not a
comment on the user interface but rather on the state of development of the tools.

We should point out that our pattem of using ISTAR may have made these inconsis-
tencies more obvious than they would be to an average ISTAR user. As our use of
ISTAR was experimental, our interest was solely in ISTAR, with no interest in the prod-

"This happens asynchronously, in the "background.” The recipient is free to do other work while waiting for
the transfer.

16 CMU/SEI-88-TR-3

ucts being developed in the experiments. Movement from tool to tool was more frequent
and less time was spent in each tool than would be spent by a production-oriented user.
As mentioned, these inconsistencies are merely annoying and have no significant effect
on the use of ISTAR.

CMU/SEI-88-TR-3 17

CMU/SEI-88-TR-3

18

3. Functional Areas

This chapter describes the ISTAR tool sets that were of greatest interest: project man-
agement, configuration management, and the Ada Workbench.

3.1. Project Management

Project management is one of ISTAR's major strengths. ISTAR's support of project man-
agement includes estimating effort, developing plans, assigning personnel to perform
work, tracking progress, and verifying quality. ISTAR provides linkages between these
elements to provide coherent project-level management support.

3.1.1. Planning Process and Products

The project management process can be described by roles and products. The project
manager manages the development of the work breakdown structure and schedule.
The resource manager controls the use of resources within resource management
center’'s. The cost controller monitors on-going projects.

The project manager creates the work breakdown structure, creates the schedule, and
issues tasks from the schedule. The project manager interacts with the resource man-
ager by asking for resources to fulfill schedule activities. The resource manager assigns
resources so that there are no conflicts among plans submitted by project managers.
The cost controller interacts with all the people assigned contracts and tracks their efforts
on particular assignments.

The following are quick summaries of the products processed during project manage-
ment. More detailed descriptions appear later in the report.

e Work breakdown structures specify the hierarchy of activities that need to be per-
formed to complete the project and the product flows between the activities.

¢ Resource management centers store physical resources to fulfill assignments within
work breakdown structures. The centers record resources which have been allocated
and resources which are still available.

¢ Schedules are processed work breakdown structures that specify the calendar time
and resources to be allocated for each of the work breakdown structure activities.

¢ Task assignments are the results of assigning scheduled activities to people selected
from the resource management center.

o Timesheets are the raw data used to track project progress.
* Monitoring reports are consolidated timesheet submissions.

A pictorial representation of the interaction of these products, and the tools which process
them, is given in Figure 3-1 which is adapted from [Imperial Software Technology 87].

3.1.1.1. Work Breakdown Structure

The project manager specifies in the work breakdown structure the project's activities in
terms of what is to be completed, without specifying who will actually be performing it, or
when it will be done.

The work breakdown structure is a hierarchy of parent and child activities. These activi-

CMU/SEI-88-TR-3 19

Specification From Client
Report to Client
AN

Work Breakdown
Structuring Tooi

Work Breakdown Structure

\7

Resource
Mgmt
Center

} Scheduler Tool

Schedule } Monitoring Tool
Task Definition ~ A
Tool
Contract Specifications Rg”t"s ':’°'“ Tnasmets
to Contractors OINracuns l
Figure 3-1: Project Management in ISTAR l
20 CMU/SEI-88-TR-3 '

ties logically partition large tasks into smaller units whose union forms the solution. Each
activity in the work breakdown structure specifies (paraphrased from [Dowson 87)):

e A small prose description of what the activity is supposed to accomplish.
* A list of products the activity requires to produce its products.

* A list of products produced.

e The types of resources needed to perform on the activity. The specification in the
work breakdown structure is an abstract request for resources that have specified
attributes.

Activities are entered one at time into the activity hierarchy. Each activity’s definition is
entered onto a few panels or “views.” Movement from view to view is accomplished via
cursor movement and the CONTEXT key.

The activity view (see Figure 3-2) describes the activity, names the products produced
and needed by the activities and the resources it requires.

Product descriptions are entered into product views, an example of which appears in
Figure 3-3. Like activities, products can be decomposed hierarchically. The product flow
from activity to activity is used by the scheduler to find an executable sequence of activi-
ties.

The resource view defines the properties of the resource necessary to accomplish the
activity (see Figure 3-4). These properties are attribute, effort, utilization and tag infor-
mation. This detailed information will be matched by the scheduler against similar
descriptive information of available resources in the resource management centers.

activity name | InsBantiation |

jparent activity 'PM Expe=iment System i

child activities

WBS version 2.6 [Conzrac:z: CMEXP]: Rctivity V.ew
>

activity description

|Transform the Analysis into ar experiment
|Instanziated for ISTAR

|
|
[
!

|
|
|
|
|
|

r
|ProgramCreste
|Steplnstantiste

products needed products produced resources required

Analusis ZxInput

r
|
I
|
|
!

e e e

|
|
|
|
|

Figure 3-2: Work Breakdown Structure Activity View

A resource attribute defines the capability and level of experience that are needed to
accomplish the activity. Attributes have the form [skill, rating] where, for example, skill is
knowledge of UNIX, and rating is a level from 1 (novice) to 10 (expert) of how well the
person knows UNix.2 The attribute panel includes [unix,5] if a person with moderate
knowledge of UNIX is needed on the activity.

81STAR allows any text string to be entered as a rating. We felt that a number scale, as reflected here, was
more appropriate.

CMU/SEI-88-TR-3 21

product type ;local product |

iparent producri i

WBS Version 2.6 [(Consrac:: CMEXP): P-oduct View
>

product name |Bxlneut i product description

Inputs needec for the experiment executisn

i
|
[
|
1
d

S g ——

child products

r
|NeyStroke
HdaCode

producing activity activities using product

"’
| Instantiation | Ixecution

.
| r
| |
| |
| |
| |
| |
| |
‘l |

e e}

g[ee

Figure 3-3: Work Breakdown Structure Product View

LBS Version 2.6 (Contrac:: CHMEXPl: Resource Vi.ew
>

resource requirement |Bocer | required by activity |ProgramCreate)
anount wits named resource | 1
;20 :nan-hou'-s i
. " o ———
Jutil 1100 resource tag |marc |
e L
resource attributres requirements Uith same tag
;Cuda.O) lrﬁnalust

e e e

| cnstantistecr

|
|
|
|
|
.

s
*

L]

Figure 3-4: Work Breakdown Structure Resource View

Effort is the number of man-hours necessary for the resource to complete the activity.
Effort differs from calendar time because a resource can be utilized part time. (Note the
“%util” field in Figure 3-4.) Specification of effort instead of actual time permits the
scheduler to determine the actual time the activity will take. An initial estimate of an
activity’s actual time is effort times 1/utilization.

Estimation of the effort required to complete activities is provided by a tool based on the
COCOMO model. Currently there is no automated connection from that tool to either the
database or to the WBS. Figure 3-5 shows an activity in an embedded system that has
been assigned a given number of delivered source instructions. The body of the input
consists of the levels of the different cost-drivers. Boehm's book [Boehm 81] describes
the meaning of each of the drivers. The derived person-months in Figure 3-6 can be
entered by hand into the work breakdown structure effort specification.

The resource name given in the “resource requirement” field of Figure 3-4, is unique to
the activity. No two activities in the structure may require the same resource. However, a
resource requirement may be given a tag and a name. A resource tag is used to collect a
set of requirements into a family. All requirements with the same tag, which are automat-
ically listed in the appropriate panel of Figure 3-4, will be assigned to the same physical
resource. The identity of that resource will be determined when the structure is proc-

22 CMU/SEI-88-TR-3

e

1EST V3.4: plavPasc

Activity ~ame

| MODE: Embedded
|Current Rctivity: [H1 Level: 2 DSi: 20000

|

IRELY: high DATR:* rominal CPLX: Frigh

ITINE: hagh STOR:¥ romiral VIRT: low TURNSX nominal
|RCAP: high RAEXP % riominal

IPCRP:R nominal VEXP:I® nominal LEXP:® romiral

IM0OP: high TOOL: haigh % rom:ral

1
|
|
|
1
1

|
IPOCOST: Kk# 10,00 DOCOST: ke 105,00 CUTCOST: ke 10.0¢ ITCOST: Kk® 10,00

Figure 3-5: Estimation Tool Activity Definition

1

;ST V3.4: playPasc

>

| HODE: Embedded

N
|

ICurrent RCrivity: proi Level: 1 0S1: 25000 |
| |
IRE |Brase Ferson-Montns (Cost kw Months Starf) |
ITI |Product Design 26.6 250.4 4.2 6.3iminal |
| | | |
|PC|Deta.led Desigr 40,2 378.3 ===l | |
im0y | - 5.1 15.6| |
|Ccde & Unit Test 39.4 368.1 === | |
PO | 0,00 |
tem|Irtegrate & Test 36.2 337.0 2.9 12, 5| m—mmeed

____________________ I

|Teta. 142.4 1333.8 3% |

Figure 3-6: Estimation Tool Results

essed by the scheduler against the resource management center. The name of a
resource in a resource requirement of a work breakdown structure is the name of a
physical resource in the resource management center. By naming a resource in this way,
the project manager makes the resource allocation himself, rather than allowing the
scheduler to do it from the pool of available resources. Tags and names are facilities by
which the project manager can restrict the allocation of resources by the scheduling tool.

The work breakdown structure tool provides a collection of reports. These include:

e Hierarchy reports giving the structures of the activity and product hierarchies.

« Dependency reports, giving the product flows from activity to activity, organized either
by product or by activity.

» Summary reports, giving all information on activities, products or resources and a full
report which combines the three summary reports.

e A consistency report.

The consistency report contains such information as activities which do not have a parent

CMU/SEI-88-TR-3

23

(there should be exactly one of these); activities which either do not produce or do not
consume any products; and products which are either not produced or not consumed by
any activity. The project manager can examine this listing and determine whether the
information it contains represents errors in the structure definition.

The work breakdown structure tool is rather cumbersome to use. The user interacts only
with a small piece of the structure, a single activity, product, or resource, and never with
the structure as a whole. IST recommends that the work breakdown structure (WBS) be
sketched on paper before being entered into the tool [Imperial Software Technology 87].
Movement from item to item can only be accomplished navigationally. There is no way to
move directly from one item to another. For example, to move from a product to a
resource description, it is necessary to first move the cursor to an activity producing or
consuming the product, press the CONTEXT key to select an activity panel, find an activity
requiring the resource (VALIDSET helps here), move the cursor to the resource name, and
press the CONTEXT key again. This is an annoying procedure.

3.1.1.2. Resource Management Centers

Resource management centers contain physical details of available resources. The
work breakdown structure contains the abstract specification of the needed resources to
accomplish activities. The scheduler matches the two.

A resource manager is assigned responsibility for each resource management center.
The creation of resources to be placed initially into the resource management center is
accomplished with the definition tool. The acceptance of requests and arbitration be-
tween conflicting requests is performed with the control tool.

Definition (see Figure 3-7) involves assigning names to physical resources, categorizing
them as either RATE or TOTAL resources, and assigning them attributes in the same
manner as in the work breakdown structure entry. RATE resources are non-consumable
and available in units such as 8-hour days. People are RATE resources. TOTAL
resources are consumables that are available in units such as 10000 sheets of paper.
Attribute matches during scheduling result in resource allocation.

An internal allocation is an assignment of personnel to non-project activities. It is the way
in which training and vacations are accommodated.

Resource requests (see Figure 3-8) are sent to the resource management centers where
the resource manager uses the control tool to first read the requests, provisionally accept
them to examine the new request’s introduction of conflicts over resources, and accept
them as assigned to the schedule that requested them. Conflicts arise if more than one
schedule requests use of the same physical resource for the same time period and the
total effort exceeds 100%. Full acceptance is not performed in the presence of conflicts.

There is no mechanism to report to the project manager that a resource request has
been denied. The resources required by a project must either be granted or denied as a
whole. The resource manager does not have the freedom to grant some of the requested
resources to a project while denying others.

Creating a resource management center is an expensive operation. [t took 33 seconds
to create a resource management center, while it took only about 20 seconds to enter the
tool on a center when it already existed.

24 CMU/SE!-88-TR-3

[RDF v2.1/CMxF: Pesource View
>

1

i

resource name resource type anount units available fron until

iBan Miller | [RATE 18 Iman-hours 187/01/02 (7722732 i
resource artributes internal ailocation name

I'tIst.ar.IOJ

| Cada.10]

Figure 3-7: Resource Definition

rianie

kesource Allocat:cn Cont~ol V2.0 (cmexpimarc:MEXP]
\

Cconfirmed bookings

print details

|
|
|
.

detrails Of ’Cmexpimarc:CrMEXP 88/03/10_16:14” (S allocarion requests)

| | e

! | IRarc G-aham Analysis 87/01-02 87,01/08 100
| | |Marc G-sham ProgramCreate 87/02,20 87702724 100
| | |Marc G-aham WriteUo 87/34-03 87,0610 100
| | |Dan Miller Executior 87/02/23 87,04/07 100
| | IMarc G-aham Steplnstant.ate 871,30 87702719 100
| |

ey

Figure 3-8: Resource Control

3.1.1.3. Schedules

Scheduling matches work breakdown structure activities and available resources in the
resource management centers. Schedules first determine the begin and end dates of a
project as if there were no resource limitations. Physical resources and people from the
resource management centers are assigned to perform each activity in the work break-
down structure.

The dates permissible for the begin and end of the project are limited to those defined to
ISTAR in its global calendar. The calendar information is specified by the ISTAR system
administrator using an E structure-editor template. The work day’s duration is input along
with work and non-work time. Work time for each year, for example, would be the normal
5 work days in the U.S. but could be different in other countries. Weekends and holidays
for each year are allocated as non-work days. Non-work durations are correctly passed
over by the scheduler.

The following detailed steps produce a schedule (derived from [Imperial Software Tech-
nology 87]):

Activity Network Formation: The activity network is formed automatically when the work

CMU/SEI-88-TR-3 25

breakdown structure is read into the scheduler's work area from either the WBS work
area or the contractual database. The network records the dependencies among the leaf
activities of the work breakdown structure, which are derived from the product flows
among those activities. The leaf activities of the work breakdown structure are those
which do not have children. The non-leaf activities are discarded by the scheduler and do
not appear in the activity network or in any subsequent outputs of the project manage-
ment tools.

Time Analysis: The user supplies the earliest start and latest finish dates for the project
and, optionally, for each of the activities in the network. The time analysis tool then
schedules the project in conformance with those dates, if possible. This is resource-
unlimited scheduling in that it assumes all resources will be available when needed. The
output of this step is available in a variety of forms including a Gantt chart, critical path
analysis, and a summary which is illustrated in Figure 3-9.

e

Sched V3,WIMEX®: Schedule summary view
>

Scheduls surmary view

tine analysis srart mnm anaiysis end mmmeuled start | | scheduied end r_-_-_-}
ativity W e start e Flhnlsh “1—;nrr 1 flnlm slack free siack s!ippage
(Bralysss t 15 2nd Jan 87 [[Bth Jen 37 | 2nd Jan 87 .[Bth Jan B7 (|0 (o i
:Steplnstantiltz : |15 9zh Jan 87 29th Jan 87 | 9th lan 87 :29th Jan 87 |10) !
:Pro[remCre:te : 3 9zh Jan 87 13th Jan 87 27¢h Jan €7 :29th Jan 87 12 Il."‘ i
:Execuexon : 30 30th Jar 37 ||12th Mar 87 | 30th Jan €7 }12ch Mar 87 |10 o]

:Ur‘.teUn E 45 13¢h Mar 37 1dath May 87 o] o]

]
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
|
|

|

|
I
1 |
| |
| |
| |
| | |
| 13th Mar €7 |1dth May 87 |
| |
| |
| |
1 |
| I
| |
| |

]
Il
Il
I
I
I
I
I
Il
I
A
I
I
Il
]
Al

It
I
I
I
I
Il
I
I
t
I
I
t
I
N
N
N

|!F

Figure 3-9: Schedule Summary After Time Analysis

Resource Limited Scheduling: This is the final type of scheduling and involves matching
the work breakdown structure against the resources in the resource management center.
Resource limited scheduling results in a more constrained schedule than that of time
analysis. Adding resource constraints only serves to limit capability to accomplish tasks.
The scheduler is given the names of resource management centers that it is allowed to
draw upon. A request for physical resources to the resource management centers is
initiated and results in the creation of a resource pool, local to the scheduler, of those
actual resources whose attributes match those of activities' requirements. Scheduling
may then be done in either interactive or batch mode. Even if time analysis results in an
acceptable schedule, resource limited scheduling may not. The scheduler offers two
techniques for dealing with this situation: resource modification and interactive schedul-
ing.

The attributes of resources required by the project may be altered. That is, the user
performing the scheduling task may decide that a particular resource need not have a
particular attribute or skill or need have it to a lesser degree. The user can neither delete
resource requirements nor alter the effort estimates. He or she can edit the descriptions
of the available resources in the resource pool. Specifically, he can:

« Alter the availability of the resource (e.g., allow for overtime).
o Alter the attributes of the resource.

o Alter existing allocations of the resource.

26 CMU/SEI-88-TR-3

These modifications are all hypothetical. They are not automatically entered in the
resource management center. Such modification requires communication with the
resource manager outside of ISTAR.

If a work breakdown structure is scheduled by the scheduling tool in batch mode, the
attributes of resource requirements will be exactly matched and the constraints imposed
by resource tagging and naming will be observed. The scheduler's interactive mode
allows the person performing the scheduling task the freedom to modify this behavior.
The scheduler will display resources having the necessary skills, but not necessarily
matching the ratings. An interactive choice among these resources can then be made.

Once a schedule has been constructed, the resource management centers are sent re-
quests for the matched resources. The resource management center control tool is used
to mediate multiple requests, as describad in Section 3.1.1.2.

3.1.2. Task Management

The task definition tool transforms scheduled activities into executing contracts. The
schedule contains information derived from the work breakdown structure, resource man-
agement center, and scheduling processes. The tool will display this information so that it
can be used when an activity is issued as a task. The issuing of a task is exactly the
assignment of a contract. Contracts are accepted by the contractor, who eventually
responds to the contract with a delivery. During contract execution, assignments can be
updated or canceled by the client. During execution, the contractor sends timesheets to
the issuing contract, for consolidated reports in combination with other timesheets. Com-
pletion of contracts is often verified with quality assurance checklists. The quality man-
agement workbench can be used to accomplish the review and check off of itemized lists
of required quality factors.

3.1.2.1. Assignment
The natural method of executing a plan is via task assignments derived from the

schedule. The schedule is the central input to the task definition tool.® The following
fields shown in Figure 3-10 are added to the assignment in the task definition tool:

¢ Task ID, job code (interactively specified): Unique numbers which identify the assign-
ment. The job code is used for timesheet reporting.

o Activity (from work breakdown structure): An activity name from the schedule. This
field is most easily input via VALIDSET. VALIDSET provides a list of activity names from
the schedule, one of which can be selected.

e Start and end dates (from schedule): Retrieved from schedule upon selection of acti-
vity.

e Status fields: Cannot be altered by user,; filled in by system. Date raised and issued.
Whether it has been superseded, canceled, or signed-off (completed). Also indicates
whether the contract was assigned to oneself, or sub-contracted to someone else.

« Reporting: List of expected reporting by the contractor to the client. May include
timesheets. '

» Standards: List of expected standards to be adhered to in fulfilling the contract.

*The task definition tool may be used without the work breakdown structure and scheduler tools.

CMU/SEI-88-TR-3 27

* Objectives: List of objective to be achieved in fulfilling the contract.

o Verification: List of conditions that must be true before the contract can be considered

complete.

The standards, objectives, and verification items may take the form of references to qual-

ity assurance checklists. See Section 3.1.4, below.

e

TD V2.5:errars

| pemume SR . L g™ gl
task id (301 | start date |02°01/37 | jraiseo ud, U g7
B et S fm—em———’ |isSUEd 04/09/87)
e ——— e peemee—ee=y | superseded |
Jjobcode 5301 | end date |26°02737 | |cancelled |
e fee—e————ed | S1gned-off |
- v | subconzractec &S|
ctivity |Fl_tesn [o
reporting standards objectives verificarion

i r
|weekly timesheet|qa team
|

{
{

r r
|correstress |98 team

| (|

| | |

(|

| |

((

| |

L —

S e

|
|
|
|
.

yGol

Figure 3-10: Task Definition

Task assignment is performed after the information in the above described fields .has
been entered. The LOCAL function “issue task assignment” prompts for the fully qualified
name of an transfer item into which the information from Figure 3-10 will be placed. The
configuration item within which that transfer item appears will have already been con-
structed and contain whatever documents and information the contractor will need to
complete the assignment. These might be code, test cases, checklists, requirements,
specification or design documents, etc, or references to such things. The “issue task
assignment” local function also prompts for the name of the ISTAR user to whom the
contract will be assigned. The configuration item mentioned above is sent to that user as
the specification of a contract.

The task definition tool user is the client of the newly assigned contract. The client
names the contract, and the contractor is free to choose a different name when accepting
the contract. The task definition tool allows a client to assign a contract to himself. This
provides a mechanism for partitioning work. A sub-contracted or self-assigned contract's
status is maintained at the client. Possible statuses include issued but not begun, begun,
complete, and canceled.

3.1.2.2. Acceptance

After the contractor is notified of the appearance of a new contract, he may accept and
rename it. He may not read the contract before acceptance and has no ability to reject it.
ISTAR assumes that contracts do not appear spontaneously but rather are anticipated by
the contractor.

A copy of the configuration item sent By the client is placed in the newly created contract
as the contract specification. The contractor accesses the information from the work
breakdown structure, the scheduler, and the task definition tool through the task definition
tool.

28 CMU/SE!-88-TR-3

3.1.2.3. Update, Cancel

The contractual relationships between clients and contractors are formed once an initial
assignment has been accepted. ISTAR permits updates to the formal task definition or
total cancellation of the contract. The contractor can not terminate the contract from his
end.

Updates to a task are specified by using the same jobcode and activity name, but a
different task id. Existence of an incoming update to the contractor is flagged in the
framework, against the original contract's name. The contract registers acceptance in the
framework.

Cancellation is also performed from the task definition tool and is registered by the con-
tractor in the framework.

3.1.2.4. Deliver

Assuming the contractor has performed the technical aspects of the contract, completion
is signaled by the delivery of a configuration item to the client. Acceptance of the delivery
in fulfiliment by the client is acknowledged with a signoff in the task definition tool. This
concludes a formal contract.

3.1.3. Tracking

Once projects begin execution, clients wish to track how resources are being used and
how progress is being made toward completion. Timesheets sent by contractors to the
clients gather raw data. Monitoring tools at the client consolidate multiple timesheets into
reports. Summary information can also be sent to superior clients.

3.1.3.1. Timesheets

Timesheets are filled out by contractors using the timesheet reporting tool. Timesheets
are submitted weekly in the ISTAR model, and specification of the expected timesheet
submission data is stored in the ISTAR's startup script for each installation.

Timesheets are entered on a E editor form. There are columns for contract, activity, job
code, and time spent per day. An automatic total per activity is maintained horizontally.
Per day totals are maintained vertically. Input is made by hand. An example appears in
Figure 3-11.

e

|Timesheet Tsol version 4.2 Enter Ccst Control Centre (Host!User:Coatract)

,{Nanc: 11 Fri 16 Jan 1987 Default Cost Centre: pmexpitil:titeam Status: AUAITING APPROVAL

 Cost Control Centre RActivity Name Sat I Sun t on ! Tue ¢ Wed | Thu | Fri 1 Tot ¢ Ren Srams
jligre>pitllititeam |des_cHarge Ieivl i 14,00 15,00 1e,00 15,0V | lTes.wil o

,_____________

| Totat Hours 10.00 10.00 14,00 15.00 16.00 15,00 10.00 120.00!)

Figure 3-11: A Timesheet

Progress comments for particular tasks are entered in a pop-up window. Estimated date

CMU/SEI-88-TR-3 29

of completion, status of the activity as complete or incomplete, and textual comments can
be entered.

Resource usage is logged on a pop-up form that is keyed on resource names within
resource management centers. Utilization is again allocated on a per day basis.

Timesheets are submitted against cost control centers. Cost control centers at the clients
store timesheet submission from muitiple subordinates and consolidate entries (see
below). When a timesheet is submitted, it is verified for: correct activity names, correct
activity-job code pairs, and the existence of a filled in progress report for each activity.
Submission changes the status of a timesheet from . “unsubmitted” to “awaiting
approval.” Approval of the timesheet by the client is described below.

3.1.3.2. Monitoring and Cost Control Centers

The monitoring tool is ISTAR's method of consolidating numerous timesheets from a
client's contractors into unified reports that track actuals against projected schedules.
The monitoring process is dependent on being abie to store timesheet submissions in a
local database. The monitoring tool creates a cost control center when it is first given a
new schedule. The new schedule provides the tool with the activity names and job-codes
that will be charged against by timesheet submissions. Pooled data reports can aiso be
input to a monitoring session from lower-level monitoring reports sent to superiors. Nu-
merous reports can be generated from these data: status reports, actuals report (see
Figure 3-12), full activity report, brief activity report, full resource report, brief activity
report, and an exceptions report that highlight exceeded user-defined limits for consump-
tion or duration.

Monitoring is one of two (the other being the resource definition) tools which have serious
performance problems. Times of 45 seconds were observed for the task of obtaining
monitoring tool input. Lesser times of 11 seconds were also observed. The task of
incorporating external timesheet submissions into an internal database and consolidating
the new data with old entries is clearly a demanding activity. The discrepancy between
the numbers can possibly be attributed to variation in the amount of data to be incorpo-
rated. Creating full activity reports in the monitoring tool also took from 45 to 18 seconds
based on the amount of data being manipulated.

3.1.4. Quality Checklists

ISTAR contracts are formal requests for action and are not enforcement mechanisms.
Quality checklists can, however, be one of the items mentioned in a contract's task de-
scription. Checklists could be included in the task definition panels “verification” or
“standards.” Quality checklists are manipulated by creating, storing, and completing
them.

The quality assurance workbench contains muitiple named work areas. The work areas
contain quality checklist forms. Each checklist is a sequence of check lines. Each check
line is identified by a label and whether it is a “criterion” or a “reference” to another
checklist within the work area. The body of a criterion check line is a description of what
is to be checked for quality. The body of a reference check line is the name of another
checklist within the work area. Thus, a hierarchy of checklists is created.

The collection of checklists in a work area can be saved. If the check lists are meant to
be used by a number of project members to assure project quality, the work area can be
placed in a library. Project members may then use the library transter facilities to get
copies.

Checklists are completed against configuration items or transfer items. Before the lists

30 CMU/SEI-88-TR-3

Monitoring Tool

Page 1

Actuals report for contract errors om 8th of February 1988

Activities for which resource bookings bave been received for 16/01/87

Activity: pmexpitll:tlteam

Status: begun
First booking date: 12/01/87
Last booking date: 12/01/87

Bast end date estimate: 23/01/87

Rasource usage this week:

Actual
Rasource Usage
til 4.00
€12 4.00

Activity progress comments

Progress ccament

things are going well.

Author: €12

Progress ccmment

the work is going well

Perscaal activity estimates

Resource user Resource used

no estimates supplied

End date

Usage required to cocmplete

Sub-contract cocmments

Sub-contract: tlteam

Figure 3-12: Monitoring Tool Actuals Report

CMU/SEI-88-TR-3

31

are compared against an item, lists can be tailored. Editing the checklists permits con-
tent changes to be made, while customizing them permits whole check lines status’ to be
marked “NOT APPLICABLE."” Reviewing a form is the central activity of checklists. Only
the status field can be changed (when comparing, the criteria are fixed). The values
assigned to each reviewed criterion are: pass (item under review has passed the
criteria), fail (the item under review has failed the criteria), requires action. The requires
action category can be upgraded to pass if the actions described in a pop-up window are
performed first. Subordinate checklists that contain any not set, requires action, or fail
status check lines, make the superior reference fail. Otherwise the parent passes. The
hierarchical evaluation method is applied recursively towards the root of the checkiists.

3.1.5. Analysis and Critique

Designed for projects with one planner, ISTAR's planning tools do not support group
planning activities. They do not react well to change after project initiation. However,
they do offer extensive support for project planning and project execution tracking.

3.1.5.1. Planning and Tracking

ISTAR's planning facility envisions one main project manager performing a project's plan-
ning. The manager performs the work breakdown structure layout, subsequently
schedules it against the resource management center, and makes assignments. The
manager sees the complete project and allocates programmers from the resource man-
agement center to the lowest pianning level. The model becomes fragile when the man-
ager wishes to solicit development or review assistance from his team leaders. ISTAR
makes assistance difficult because there is no method to merge contributions or com-
ments back into the work breakdown structure. The ability to add to the work breakdown
structure is critical since the work breakdown structure feeds the schedule, resource
management center, and task-assignment planning cycle.

One method to obviate the need for merging, is to linearize access to the work break-
down structure. In this technique, the manager constructs an initial trial work breakdown
structure and places it in a configuration item which he or she makes accessible to proj-
ect leaders. The first leader retrieves the configuration item and can access and, if
necessary, modify it using the work breakdown structure tool, creating a successor in his
contract database. That item is then made accessible to the next leader in line, who
repeats the process. Serialization can aiso be interactive between the manager and each
team leader so that the manager can confirm modifications.

Another coordination possibility has each team leader commenting in parailel on disjoint
portions of the work breakdown structure. The leaders would be working on numerous
copies of the original manager's configuration item. However, there is no merging at the
manager's level, and the manager wouid have to manually update each portion of the
master work breakdown structure.

Both of these solutions to the group planning problem are tedious. Group planning activi-
ties are best done offline and the completed work breakdown structure entered in one
location. This is in keeping with ISTAR's basic philosophy of formally recording informal
communications.

Once a definitive work breakdown structure has been established by the project man-
ager, it evolves into a schedule. A muiti-leveled work breakdown structure results in a
schedule containing only the bottom layer leaf node activities. The intermediate levels of
the activity and product hierarchies are used to deduce the dependencies among the
leaves, but the other information associated with those products and activities, their
descriptions and resource requirements in particular, are iost in the schedule.

32 CMU/SEI-88-TR-3

Assume for the moment that the project manager supervises a group of team leaders,
each of whom supervises a group of programmers. If the project manager uses the task
definition tool to directly assign the activities of the schedule, the resulting contract hier-
archy will be flat; each of the contracts will have the manager’s contract as its parent; the
structure of the organization will not be reflected in the contract hierarchy. This has an
effect on the cost control and timesheet reporting mechanisms. These mechanisms can
only be used on contracts which have been created by the task definition tool from a
scheduled work breakdown structure. Timesheets must be sent to a cost control center
which contains the schedule from which the reporting contract was defined. Thus, if the
manager directly assigns contracts from the schedule, the intermediate supervisors will
be bypassed and will not be able to track the efforts of the programmers who work for
them.

One method of circumventing this problem is for the project manager to assign manage-
ment tasks as contracts to her team leaders. The project manager should include the
schedule as a transfer item within the configuration item which forms the specification of
that contract. The team leaders can then import the schedule into the task definition tool
and assign activities from it to their programmers. Timesheets will then be sent to them
by their programmers. It is best if the work breakdown structure contains management
activities as leaves. The scheduler and task definition tools can then be used to assign
these management contracts and the project leader can receive timesheets from team
leaders.

The schedule can also be sent to a cost control clerk who can use it within the monitoring
tool, the tool which accepts timesheets, thereby relieving the technical management from
that responsibility.

Another technique for dealing with this problem, which we used in our instantiation of the
project management experiment, can be called the “level-by-level” approach. In this
technique, each manager plans only the activities of his or her immediate subordinates.
The project as a whole develops into a hierarchy of activities as each person adds more
subordinates and their activities. This development model is “lazy” project management.
All persons are expected to contract for further support, at their own discretion and when
they deem necessary. The level-by-level approach forces the planning hierarchy, now
only one level deep, to be identical to the contract hierarchy. The timesheet reporting
hierarchy is likewise identical to the contract hierarchy. Monitoring tool reports exactly
follow the contracting hierarchy and thus up the planning hierarchy.

A number of advantages and disadvantages accrue from limiting planning to a level-by-
level approach. Advantages having to do with replanning activities are described in Sec-
tion 3.1.5.2, below. A major disadvantage is that no one person is acting as project
manager. The project cannot be scheduled as a single entity. Resources are not al-
located to the project as a whole but to its sub-activities. Conflicts are more likely and
more difficult to resolve. It is difficult to ensure that the various sub-schedules correctly
interrelate.

When the project is planned and scheduled in its entirety, the project manager interacts
with the resource manager to arrive at an equitable use of personnel by exchanging
comments on the total allocation of peopie to the project. In the level-by-level approach,
each leader competes against all other leaders for programmers. Level-by-level planning
promotes great tensions between planners. To alleviate the tension, multiple resource
management centers could be created and one assigned to each leader. A benefit of
such an approach is that each leader is independent of other leaders and thus can per-
form planning and resource allocation without interference. But this method is demand-
ing. It requires that the organization partition the company’s personnel to each manager
and team leader in a strict hierarchy ahead of time.

CMU/SEI-88-TR-3 33

Not all projects are organized hierarchically. Alternatively, work may be assigned to a
group of equally capable programmers who determine among themselves how to divide
up the work to fulfill the leader’s request. ISTAR does not directly support such coopera-
tion because a contract is issued to a single user. There are two options and they both
result in the imposition of a hierarchy. The first option is that one of the programmers be
designated the leader of the group; not a leader among themseives but a leader from the
outside view. The designated person could receive contracts for the group and then,
after negotiation with his partners, assign the other programmers their portions. The lead
programmer would then consolidate the work of the group to form the combined resuit.
The second option is to create a fictitious person who acts as a hypothetical leader for
the group. The programmers could take turns in the leader role by logging in as the
fictitious leader. The decisions about who contributes what products are enacted by
assigning contracts to the individual programmers. Note, though, that both of these op-
tions have resulted in a return to the basic structure of a manager, leaders, and program-
mers which ISTAR supports.

3.1.5.2. Accommodating Change

Changes to a project plan can occur either during the planning stage, that is, before the
project begins execution and a contract is assigned, or after the project has begun and
contracts are being executed. Changes of the latter class, that is, changes during project
execution, can either be changes to the content or the structure of the project. Content
changes are those which affect the specification of the product and therefore are altera-
tions to the work being done by the project members. Structural changes are changes in
the project personnel, their reporting relationships or their task responsibilities. ISTAR's
reaction to these changes is described, beginning with changes during the planning
stage.

As mentioned earlier, the initial work breakdown structure is best created offline. After the
work breakdown structure is subjected to time analysis in the scheduler, the resulting
schedule, which is a “best possible” scenario, may not be acceptable. If so, it will be
necessary to reenter the estimation tool, in order to change the estimation parameters,
reenter the WBS tool, so as to enter the new effort estimates and possibly change the
activity structure, and reimport the work breakdown structure into the scheduler. Of
course, all of these changes should be done only after a re-analysis of the project’s
needs. It is best if the intermediate versions of the work breakdown structure are stored
under configuration control in the contract database.

As mentioned in the discussion of the scheduler, see Section 3.1.1.3, the person per-
forming the scheduling task has some freedom to modify the resource requirements of
activities within the schedule. These changes are rather limited and any major changes to
the structure of the plan will require re-execution of the planning cycle.

In summary, accommodating changes during the planning stage requires cycling through
the estimation tool, the WBS tool, the scheduling tool and the resource control tools.
Movement from the estimation to the WBS tool is particularly difficult as there is no auto-
mated support for it. The estimates produced by the estimation tool must be hand-copied
into the WBS tool. The entire process is made tedious by the delay in bringing an ISTAR
tool up or down. This took anywhere from ten to thirty seconds on our experimental
testbed.

Resource control is loosely integrated with the other project management tools. The
scheduler operates on a local copy of the information in the resource management
centers’ data, a copy of which is locally editable, as described in Section 3.1.1.3. The
local changes do not affect the central data. If resource control and project planning are
carried out by different individuals, they must communicate informally, outside of ISTAR.
The resources in the scheduler's local copy may be acquired by other projects during the

34 CMU/SEI-88-TR-3

scheduling process. In such a case, when the scheduler’s resource allocations are sent
to the resource manager, they may be rejected. The project planner is not automatically
notified of such an event.

The class of changes which can occur to a project plan after the project has begun
execution can be of two types: changes to the content and to the structure of the project.
Task content changes can be easily made with the task definition tool. These changes
involve the information passed to an existing task and thus do not involve changes that
affect reporting relationships or personnel assignments. ISTAR supports this ability with
an operation in the task definition tool that sends another configuration item to the con-
tractor. By using a new task id and the job code and activity name of an existing task
(see Figure 3-10), the project planner can transmit the new contract specifications to the
original contractor.

Structural changes, however, are much more difficult to implement. If a leaf activity of the
work breakdown structure is too large, and it has become desirable to divide into a set of
smaller activities to be assigned to multiple individuals, the WBS, scheduler, task defini-
tion cycle must be reexecuted. The tasks assigned from this new schedule are not
connected to the original tasks. In particular, timesheet and monitoring reports from the
prior set of tasks are unrelated to the new set and the information they contain may be
lost.

Consider the necessity of reassigning personnel assigned to the project after it has
begun execution. ISTAR does not have a facility to reassign a contract from one ISTAR
user to another. To accomplish this result, the new user must be assigned a new contract
and the items needed from the existing contract must be transferred on an item-by-item
basis. The new contract is not related to the old one from a timesheet, cost accounting
point of view.

The resource control tool will not delete nor add individual resources from or to a project.
It will only UNBOOK the entire project, marking all of the resources of the project as un-
assigned. Therefore, if a single individual leaves a project, the entire project must be
rescheduled by the scheduler in order to replace that individual with another.

A lazy assignment mechanism reduces the effect of these difficulties. Schedules contain
task assignments waiting to be made. It is matter of choice as to when to actually make
the assignments. ISTAR does not compel any task assignment methodology. Assign-
ments can be made immediately after schedule creation or at anytime thereafter. Lazy
assignment minimizes the amount of work necessary to accomplish the structural
changes. Tasks which are not assigned as contracts until they need to begin execution
are less likely to need to be reassigned.

Projects may not be lazily scheduled, however. The entire work breakdown structure
must be scheduled against the resource management center at one time. Resources can
become allocated in the resource management center long before they are actually
needed. This increases the probability that resource modifications will be made.

In summary, ISTAR project management is a collection of tools covering the estimation,
planning, scheduling, and accounting tasks. They could be improved if they were more
tightly integrated and more flexible in their response to changes.

CMU/SEI-88-TR-3 35

3.2. Configuration Management

ISTAR offers configuration management capabilities for items stored within contract data-
bases. Storage within ISTAR is divided into work areas and contract databases. Work
areas are specific to workbenches and contain information while it is being created or
modified. There is no configuration management support for items within work areas.
Contract databases are specific to contracts and contain information once it has reached
some level of stability. ISTAR provides successor and variant control for items within
contracts. There is support for user-defined relationships between configuration-
managed items and a problem reporting mechanism. There is also a library service and
support for recorded system building. These capabilities are discussed in the next sec-
tion.

3.2.1. Successor and Variant Control

The unit of information within a contract database is the transfer item, or X|. Transfer
items are the unit of transfer between work areas and contract databases. The content
and granularity of transfer items vary from tool to tool. For the Ada workbench, a transfer
item is a compilation unit; for the text workbench, it is any number of text files; for the
WBS tooal, it is a work breakdown structure.

Within a contract database, transfer items are gathered into sets called configuration
items, or Cls. Cls exist only within such databases. The primary, technical function of a
Cl is to act as the unit of transfer between contracts. They can be used for various
purposes. The Cl which serves as the specification of a contract may contain, as sepa-
rate transfer items, a design of the system to be built, identity of the resources to be used
to build it, standards to be used, and a schedule to be met. A Cl may also serve as a
baseline of a software system. In this case, the transfer items are the modules or compi-
lation units which make up the system.

Both configuration and transfer items, collectively called “items,” are subject to successor
and variant control. A successor of an item is a new version of it which supersedes it.
(The older version is not deleted.) A variant of an item represents a parallel line of devel-
opment. The sequence of item successors are distinguished by number; the variant
branches of an item are distinguished by name. Variants may themselves have succes-
sors and variants.

The interaction of transfer items, configuration items, successor numbers, and variant
names can be understood by consideration of the full name of transfer items. These are
of the following form:

ciname ([variant,] successor#) +xiname ([variant,] successor#)

The square brackets around variant indicate that it is an optional item. The mainline of
development is that sequence of successors having the null string as its variant name.
This is the only notion of mainline versus sideline in ISTAR.

If this document were stored in an ISTAR database, as a configuration item named
“Report,” this section might be a transfer item within it, called “CM.” As the report goes
through editorial revisions, successors of that transfer item are created. If a specialized
version of the section were needed, for a specialized audience,'° say, a variant would be
created. After awhile, the collection of versions of this section would resemble the
diagram in Figure 3-13, which is adapted from [CMGuide 87].

"%There are no such variants of this report.

36 CMU/SEI-88-TR-3

Report (1)+CM (1)

Report (1)+CM(2)

Report (1)+CM(military,

Report (1)+CM(3) Report (1)+CM(military,

and so on ... and so on ...

Figure 3-13: Successors and Variants

The picture given in Figure 3-13 describes the structure of a collection of versions of a
single transfer item. A similar sort of picture can be drawn for a collection of versions of a
configuration item. The tree structure shown in Figure 3-13 applies equally well to config-
uration items.

ISTAR recognizes two symbolic successor numbers. They are #L, meaning latest or last
successor, and #P, meaning preferred successor. These symbolic numbers are of use
when a transfer item is imported into a tool's work area. Thus the name

Report (#P) +CM (#L)

in an import operation calls for the preferred version of the report as a whole (the configu-
ration item) and, within that, the latest version of the configuration management section.
The identity of the preferred version of an item is set within the component management

tool (CMT).

Although the application of successor numbers and variant names is the same for config-
uration and transfer items, the operations which create the successors and variants differ
for the two classes of items.

As noted, transfer items are transferred between work areas and contract databases.
Therefore, it is the export operation, which moves the item from the work area to the
database, which creates successors and variants of transfer items. Many of the
workbenches have specialized export operations for new, successor, and variant trans-
fers. In many cases, the VALIDSET key (described in an earlier section) will provide a list of
transfer items in the contract for which the tool may export successors or variants. in all
cases, the user must give the full name, in the “ciname+xiname’ format displayed earlier,
of the item being exported.

CMU/SEI-88-TR-3 37

Variants and successors of configuration items are created within the component man-
agement tool. This is the only tool which has direct access to the contract database and
therefore the only tool which has access to configuration items. It can be invoked from
the housekeeping menu of every other tool. When a successor or variant of a configu-
ration item is created by the CMT, the newly created item is an exact copy of the original.
This copy operation does not involve data replication; the two Cls share copies of the XIs.

After creation, the two copies may diverge through the addition, or deletion, of transfer
items.

The CMT implements a merge operation for configuration items. This operation allows
the user to selectively copy transfer items from one Cl into another. As above, no data
replication occurs in this copy operation; the Xls are shared.

The CMT contains an operation to create a new, empty Cl. A new Cl can also be created
when a transfer item, whose “‘ciname” does not name an existing Cl in the contract, is
exported from a tool.

In a future release of ISTAR, the relationship between Cls and Xls will be slightly modi-
fied. Xls will exist as objects in their own right within the contract database. The exporter
of an item will give only the “xiname” portion of the full name. The collection of Xls
forming a Cl will be a matter determined solely by the CMT.

A Cl may be modified or deleted as long as its status is free. The modification of a Cl is
the addition or deletion of Xis. A Cl which is not free is frozen. Thus the Xls within a
frozen Cl can not be deleted.

An XI| within a contract database cannot be modified. The corresponding text within the
work area may be modified freely, but its image in the database will remain unchanged.

An X! within a free Cl may be deleted only if it does not have a successor and it has not
been imported into a work area.

A Cl becomes frozen when a significant operation is performed on it [CMRef 86]. Signif-
icant operations are those which transfer the item to another contract or which create a
successor or variant of it. Thus the Cl forming a specification is frozen when the contract
is assigned. In this case, it will be frozen in both the client's and the contractor's data-
base. This prevents either party from modifying the specification after the contract is
initiated. Likewise, transferring an item to a library or retrieving one from another contract
will freeze the item in both locations.

A frozen Cl can be copied to a successor or variant. This allows work to be performed on
it subsequent to its transfer to another contract. There is no operation which will unfreeze
a frozen CI. There is no freeze operation as such; a Cl becomes frozen only as the result
of a transfer to another contract or creation of a successor to it.

Every item in the database has an associated description. This is free text which can be

displayed via a menu operation in the CMT. The text can be edited, provided that the
item is free.

The CMT will display various information about a given item. Some of this information is
outlined in the following list.

e The variant and successor list for the item. Identity of the latest and preferred suc-
cessors. Whether free or frozen. Whether access is allowed for other users.

o |dentity of the contract in which the item was created.

e A list of retrievals of this Cl by CM operations (RETRIEVE CI or SCAN LIBRARY). The date

38 CMU/SEI-88-TR-3

and time of the retrieval, the host, user, and contract into which the retrieval occurred
are recorded.

e Problem reports posted against this item and other notifications (e.g., library
installations).

» The list of XlIs within a Cl, their types and dates and times of creation.

e For Xls, the identity of other appearances of the same item. Recall from the above
discussion that XlIs can be shared.

The information in the preceding list appears in several different reports. Examples of
these reports are given in Figures 3-14 through 3-19.

Istar COMPONENT MANAGEMENT TOOL

Version History query on BOl1l(l)
Date: 1 Feb 88 USER: marc
Time: 11:16:48 HOST: cmexp

LATEST CI in stem is B0l(3)
PREFERRED is set to ’'#L’ which is B01(3)
Successor list for B0l (1)

BO1(1) FROZEN Access - log users
BO1(2) FROZEN Access - log users

==> (also a basis for BOl(Test,l)
'BO1(3) FROZEN No Access

=== End of Query =---
Figure 3-14: Version History Report for a Cl

3.2.2. User Defined Relationships

The internal data model of the contract database is the binary model. The fundamental
structuring mechanism of this model is the binary relationship. These are of the form
“object1 has_relationship_with object2.” For example, the sharing of Xls by Cls within a
contract is accomplished as follows.'!: XI names of the form “ciname+xiname” are
stored as elements of a “class” USER_XI. Elements of that class are related to elements
of the the class XFER_ITEM by the relationship HAS_REAL_XI_NAME. The text of the
item is stored outside of the database in a file whose identity is recorded in XFER_ITEM
element. So any number of USER_Xls may be reiated to the same transfer item via the
HAS_REAL_XI_NAME relationship. None of this internal structure is visible to the user of
the CMT.

The user of the CMT may define his own relationships and use them to relate items.
Relationships must be defined before they can be used. Every relationship has a cor-
responding inverse relationship. The names of these relationships are specified
separately by the user at definition time. Once a relationship is defined, any Cl or X| may
be related to any other Cl or Xl via the relationship. The inverse relationship is imple-
mented automatically. Thus, if a user relates object x to object y via relationship A, and S
is the inverse of R, then y will be related to x via S at the same time. The roles of fand S

"ISTAR has a generalized “walk” facility for browsing contract databases. This is of interest only to those
having some knowledge of ISTAR internals and would not be needed by the average ISTAR user.

CMU/SEI-88-TR-3 39

Istar COMPONENT MANAGEMENT TOOL

Status query on BO1l(3)

Date: 1 Feb 88 USER: marc

Time: 14:11:58 HOST: cmexp
CONTRACT: OMEXP

B0O1(3) is FROZEN

‘Status query on BO1(3)

Access: No Access

CI was created in current contract

Transfer items

BO1 (3) +AIMSUPPORT (1) ADA_SPEC 87/08/04_16:56
BO1 (3) +CISUPPORT (1) ADA_BODY 87/08/04_16:56
BO1 (3) +CISUPPORTS (1) ADA_SPEC 87/08/04_16:56
BO1 (3) +CMDINTE (1) ADA_BODY 87/08/04_16:56
BO1 (3) +CMNDINT (1) ADA_SPEC 87/08/04_16:57
BO1 (3) +PRFRMCMND (1) ADA_SUB 87/08/04_16:57
BO1(3)+IMGMGR (1) ADA_SPEC 87/08/04_16:58
BOL (3)+MAIN(1) ADA_BODY 87/08/04_16:58
BO1 (3) +PGETRM(1) ADA_SPEC 87/08/04_16:58
BO1(3)+STRUTLB (1) ADA_BODY 87/08/04_16:59
BO1 (3) +STRUTL (1) ADA_SPEC 87/08/04_16:59
BO1 (3) +VWPRTMGR (1) ADA_SPEC 87/08/04_17:00
BO1(3)+VTSUPP (1) ADA_SPEC 87/08/04_17:00
BO1 (3) +WNDWMGR (1) ADA_SPEC 87/08/04_17:01
BO1 (3) +MAIN (VISUPP, 1) ADA_BODY 87/09/04_15:46
BO1(3) +PGETRMB (1) ADA_BODY 87/09/04_15:56

-=~ End of Query ---
Figure 3-15: Status Report for a Cl

Istar COMPONENT MANAGEMENT TOOL

Version Eistory query on BOl(3)+MAIN(1)

Date: 1 Feb 88 USER: marc
Time: 14:12:55 HOST: cmexp

8 CONTRACT: CMEXP

LATEST XI in stem is BO1l(3)+MAIN(1l)

PREFERRED XI is defined as '#L’ which is BO1l(3)+MAIN(1)
Successor list for BO1(3)+MAIN(1l)

BO1 (3) +MAIN (1) ADA_BODY 87/08/04_16:58
----------------------------- > (also a basis for BO1(2)+MAIN(VISUPP,1)

=== End of Query ---
Figure 3-16: Version History Report for an XI

are fully symmetric; the same state wouid have been achieved had the user related y to x
via S.

40 CMU/SEI-88-TR-3

Istar COMPONENT MANAGEMENT TOOL

Status query on BOl(3)+MAIN(1l)

Date: 1 Feb 88 USER: marc
Time: 14:13:36 HOST: cmexp

5 CONTRACT: OMEXP

------ CONFIGURATION ITEM - = = = - = =
BO1(3) is FROZEN

Access: No Access

------ TRANSFER ITEM = = = = = = =
Type: ADA_BODY

Created: 87/08/04_16:58

------ OTHER REFERENCES = =~ = = = = =

BO1 (1) +MAIN(1) Imported by B02
BO1(2) +MAIN(1)

BOl(Test,1)+MAIN(1)

New (1) +MAIN (1)

=== End of Query ---
Figure 3-17: Status Report for an XI

Istar COMPONENT MANAGEMENT TOOL
Logged users query on BO1l(1l)
Date: 9 Feb 88 USER: marc

Time: 15:08:52 HOST: cmexp
. CONTRACT: COMEXP

2 logged users

Copy taken by cmexp!molly:Library on 87/08/27_14:24
Copy taken by cmexpimolly:Library on 88/02/03_16:26

=== End of Query ---
Figure 3-18: Users Taking a Copy of a Cl

Component Manasgement Tool (Version 2.3)

| USEP:

mare FR0O37: cmexp CONTRACT: CMEXP :Loatrac:) |

I cncxplnlrcEO!DtPIS PROBLEM Raised: 25th Nw 87 15 57 36 Concerns:
| cmexpimarciCNEXP/4 NOTIFY Raised: 3rd Feb 83 16:13:47 Concerns: BO1(1)

NnTlFV Raised: 27th Rug 10:03:SS Concerns: BO1(1)>
GENERAL

i

Logged users |
Reports i
uurimships |
Quitr [

]

i

|

i

4

Quit menu |

Figure 3-19: A Display of the Reports Attached to a Cl

CMU/SEI-88-TR-3

41

Relationships cannot span contracts. None of the ISTAR tools other than the CMT is
aware of the existence of user defined relationships.'? For example, it is not possible,
when importing an Xl into a work area, to reference the item to be imported via a base
name and a relationship.

User-defined relationships can be used to implement a traceability feature within ISTAR.
For example, the user may wish to have a DESIGN_FOR relationship between a design
object and a code object. However, the user must maintain all such relationships
manually. ISTAR has no means of enforcing an integrity constraint of the form “ail code
objects must have a design object to which they are reiated.” Furthermore, as the ciass
mechanism described earlier is not available to the user, ISTAR will not assist the user in
ensuring that, if the relationship “x DESIGN_FOR y” hoids, that x is a design and y a
code object. The CMT will allow any Cli or Xl to be related to any other Cl or XI by any
user-defined relationship.

The CMT has an operation which will dispiay the relationships which involve a given item
and an operation which will display all the relationships within a contract. Examples of
these two reports are given in Figures 3-20 and 3-21.

Istar COMPONENT MANAGEMENT TOOL

Relationship query on BOl(1l)

Date: 9 Feb 88 USER: marc
Time: 15:11:48 BOST: cmexp

. CONTRACT : OMEXP

BO1(1) HAS DEPENDENT Naew(l)

--- End of Query ---
Figure 3-20: The Relationships Involving a Given Cli

Istar COMPONENT MANAGEMENT TOOL

User defined relationship query

Date: 9 Teb 88 USER: marc
Time: 15:22:13 BOST: cmexp

P CONTRACT: QMEXP

BO1(1) HAS DEPENDENT New (1)

BO1(Tast, 1) +AIMSUPPORT (1) HAS_DEPENDENT BO1 (3)+AIMSUPPORT (1)
BO1(3) DEPENDS_ON Naw(1)

BO1 (3) +AIMSUPPORT (1) DEPENDS_ON BOl (Test,1)+AIMSUPPORT (1)
Naw (1) EAS_DEPENDENT BO1(3)

New (1) DEPENDS_ON BO1 (1)

--- End of Quary ---
Figure 3-21: All the Relationships Within a Contract

2The report generator tool (RGT) and its associated report generator language (RGL) can utilize user
defined relationships in the production of user defined reports. RGL/RGT is described in a subsequent section
of this report.

42 CMU/SEI-88-TR-3

3.2.3. Problem Reporting
The CMT offers a problem-reporting mechanism that works as follows.

The user first noticing a problem RAISEs a Problem Report. This results in a form being
displayed and edited using the form-oriented editing capabilities of the editor, as de-
scribed in a prior section of this report. The information entered into this form includes a
summary and full description of the problem and the type, severity, and urgency of the -
problem. A problem report may be attached to a Cl or XI within the contract or may be left
unattached or “‘general.”

There are three, not necessarily distinct, people associated with any problem report: the
originator, the controller, and the holder. The originator of the report is the user who
RAISEd it. The originator's identity does not change during the lifetime of the report. After
the report is RAISEd, the originator, holder, and controller of the report are the same
person. The holder of a problem report may SEND the report to another user, who then
becomes the holder. If the holder is also the controller, he or she may pass controllership
to the new holder. Figure 3-22 is an example of a problem report at this stage.

Only the holder of a problem report may modify it or send it to another user. Thus there
is exactly one holder of a given problem report. Prior holders retain copies which they
may display but not modify. In order to send the report, the current hoider must know not
only the name of the user who will become the new holder, but also the name of the
contract in which that user manages problem reports.

The holder of the problem report can RESPOND to it, which will cause the report to be
edited with the form-directed editor. The holder can then enter a response in the appro-
priate portion of the form. He or she can then SEND it to another user or RETURN it to its
controller. Any number of responses can be added to a problem report.

The controller of a problem report, wrile also its holder, may EVALUATE it. This causes the
report’s status to be changed to EVALUATED and the problem evaluation section of the
report to be filled in with text. The controller may FiNISH the report, changing the status to
FINISHED and informing the originator that the problem has been solved. Finally, the con-
troller can CLOSE the report, marking its status as CLOSED and making no further changes
possible.

An organization wishing to use the ISTAR problem-reporting mechanisms will need to
have guidelines in place to support it. Consider the user who first notices the problem.
Assuming that the user does not bear the responsibility for repairing the problem, he or
she must know who is responsible and the name of the contract under which that user
carries out that repair work. This places a considerable burden on the user. In order to
ease that burden, the organization can appoint a central clearinghouse contract for prob-
lem reports. The owner of the clearinghouse contract re-sends problem reports to in-
dividuals who might be able to deal with the problem. Through some number of rounds
of SENDiIng and RESPONDINg, the appropriate individual.is identified and controllership of
the report is transferred to him or her. Alternatively, the responsible individual can be
identified through informal means.

3.2.4. Libraries

The ISTAR library facility is an-application of the contract database technology. Tech-
nically, a library is a partition of a contract database. It is possible for a contract database
to be used both as a contract, in the standard way, and as a library. ISTAR will keep the
items in the library separate from the items in the contract. However, it seems good
practice not to use a contract database in both ways simultaneously.

CMU/SEI-88-TR-3 43

Istar COMPONENT MANAGEMENT TOOL

Report query on PR cmexp!marc:CMEXP2/1

Date: 2 Feb 88 USER: marc

Time: 15:28:01 BOST: cmexp

. CONTRACT: CMEXP2
|Istar PROBLEM REPORT

| ---
|PR: cmexp!marc:CMEXP2/1 Status: EVALUATING

| S - - —
|Raised from :

|Raised : 2nd Fab 88 15:00:48

|Last Updated: 2 Feb 88 15:06:40

|Originator: cmexp!marc:MEXP2 Infom: y
|Controller: cmexp!molly:Library

|Bolder : cmexp!molly:Library

|Concerns : GENERAL

} User Controller
|

|Problem type : error /

|Problem severity: critical /

|Problem urgency : immediate /

| Summary: Example Problem Report

|

|Description:

|This is a full description of the problem.

I -
|Responses:

|

|From:

|Date:

|Comments:

|Problem evaluation:
]
| smcccccccccccccccccnccccccccccccccccccccceccccscecccscecsecescccancnaaaan

-=- End of Query ---

Figure 3-22: Example Problem Report

The library is meant to serve as a central repository of information. Their may be any
number of libraries within an ISTAR host or datatree. The organization using ISTAR will
determine how many libraries it needs and what class of information will be stored in
each. ISTAR imposes no restrictions and offers no constraints with respect to the content
of libraries.

Recall that the unit of transfer between contracts is the configuration item. So the items
stored are Cls. Of course, there is nothing to prevent a Cl from containing a single XI, so
the granularity of storage in a library is not an issue.

In order to have an item stored into a library, a user proceeds as follows. The Cl to be
transferred into the library must first have access for other users allowed for it. The Cl is
then selected, the TRANSFERS menu is entered and the RAISE NOTIFICATION operation is
performed. This causes a form to be popped up into which information about the Cl is

44 CMU/SEI-88-TR-3

entered under the control of form-directed editing. After the form is completed, it is SENT
to the library. The library (contract) name, and the name of librarian, the contract owner,
are entered as parameters to the SEND. A copy of the notification form is kept by the user.
An example of the form is shown in Figure 3-23. Notice that the identity of the library to
which the item has been sent is not listed in the form.

Istar COMPONENT MANAGEMENT TOOL

Reports query on BOl(1l)

Date: 3 Feb 88 USER: marc

Time: 16:20:01 BOST: cmexp

0 CONTRACT: COMEXP
|Istar LIBRARY NOTIFICATION

' ---------------------------- - - = - - - - - = - -
|No: cmexp!marc:CMEXP/4 Status: SENT

|Contract: cmexp'!'marc:MEXP
| Item: BO1(1l)
| Raised: 3rd Feb 88 16:13:47

| Summary of configuration item:

|Initial Baseline for OM Experiment

|

|Full configuration item description:

|This item contains the Ada code containing the initial baseline of the
|System used in the Configuration Management Experiment

|

|Reason for submission:
|It is submitted in order to establish it as the initial baseline.

=== End of Query ---

Figure 3-23: A Library Notification Form

The librarian receives the notification form and reads it using the CMT function READ
NOTIFICATION. Having reviewed the form, the user may then ACCEPT or REJECT it. The user
transferring the item into the library is not informed of the librarian’s decision. If the item is
accepted, the transfer operation is initiated. That operation runs asynchronously as a
background process. It will not succeed until the librarian closes the library. The librarian
is informed of the transfer's completion and then re-enters the library. He then issues an
INSTALL TRANSFER command to complete the instaliation of the item in the library. The
item wili now be frozen in both the library and the originating contract.

It is possible that the item being installed into the library has the same name, variant, and
successor number as an item aiready in the library. This is called a “name clash.” The
librarian must resolve the name clash by providing a new name for the incoming item.
The item may therefore have different names in the library and originating contract. It is
up to the organization to provide naming conventions to prevent that behavior.

In order to retrieve an item from a library, the user proceeds as follows. The librarian
must allow access to the Cl, as the default, even in libraries, is no access. The user then
issues a SCAN LIBRARY operation in the CMT functions menu, providing the name of the
librarian and the library as parameters. In the case that the library resides on the same
host or datatree as the user, the dominant case, the system will respond with a listing of
the library contents. An example of such a listing is given in Figure 3-24. The user can
then select the item to be retrieved using cursor movement. The transfer occurs
asynchronously, as previously described, and at transfer completion the user INSTALLS
the item, as previously described.

CMU/SEI-88-TR-3 45

-omponent Management Tool (Versicn 2.3)
>

|TUSER: marc HOST: cmexp CONTRACT: CHMEXP (Contract)
|Scanning Library “Library’ - <cr> selects <cmd-q) quits

BO1(1 B801(

Figure 3-24: A Library Scan Listing

A user may retrieve configuration items from ordinary contract databases as well. The
procedures are much the same as for library access except that the operation RETRIEVE Cl
is used in place of SCAN LIBRARY. The listing illustrated in Figure 3-24 is not provided and
the user must know the exact name of the Cl. There is no means similar to RAISE and
SEND NOTIFICATION by which a user can have an item installed into another user's contract
database. (The contract assignment and delivery operations result in such a movement
of a Cl, but they are specialized and cannot be used for general transfer between any
pair of contracts.)

3.2.5. Recorded System Building

ISTAR provides a system building facility called “Pmak” which is based on the standard
UNIX facility MAKE. Strictly speaking, Pmak is not an ISTAR tool, but rather a UNIX tool
supplied by IST. The build tool invokes Pmak to perform the build, but its purpose is to
record it, rather than perform it.

Pmak is a generalized version of MAKE. Input to Pmak is considerably shorter and easier
to construct than the equivalent input to MAKE. Pmak is also conditionalized, in the man-
ner of the UNIX C-preprocessor (CPP). This allows a single Pmak script to vary its be-
havior in different environments. IST uses Pmak for the construction and installation at
customer sites of ISTAR.

To use the build tool, an ISTAR user performs the following actions.

1. Build the system under UNIX using Pmak.

2. Export the source files of the system and the control files needed by Pmak from the
UNiX file system (using the UNIX workbench) to the contract database.

3. Import the files mentioned previously from the contract database into the build tool's
work area. This exportation and importation is facilitated by the tool. The UNIX
workbench has a “mega-export” facility that exports an entire directory’s contents.
The build tool uses the Pmak control files to automatically import the source files from
the contract database.

4. Invoke Pmak from the build tool. This results in the system being rebuilt and the
identity of the files used in the build being recorded in the build tool's work area.
Symbolic successor numbers (#L, latest, and #P, preferred) are translated to the
actual successor number used. The date and time of the build are recorded.

46 CMU/SEI-88-TR-3

The output of the build, including the control files, may be re-exported to the contract and,
if desired, re-imported to the UNIX files.

Pmak does not inter-operate with Ada source code. It was therefore of little interest to us
and we did not use it in our experiments.

3.2.6. Analysis and Critique of Configuration Management

We encountered numerous difficulties in using ISTAR configuration management facil-
ities in the execution of the configuration management experiment. The reader can find
details of the experiment and of our mapping of it to ISTAR in the appendices. A sum-
mary of those difficulties follows.

The experiment speaks in terms of “baselines” and “releases.” A release is a baseline
which has been shipped to a customer. A baseline is a collection of modules which make
up a functioning and stable version of a software system. The experiment is concemed
solely with software configuration management.

The first problem was to determine what a baseline was in ISTAR. It was not hard to
decide to use a frozen configuration item as a baseline; a frozen Cl contains elements
which can easily be used to store medules of a system and cannot be modified. The next
problem was to determine where to keep baselines. We decided to create a library within
which they would be stored. This was not strictly necessary but we did it in order to
exercise the ISTAR library facility during the experiment. We did not discover a technique
to distinguish released baselines from non-released baselines. We could have done that
by establishing another library in which only releases were stored.

The experiment also speaks of “elements” and of the operations create, delete, fetch,
reserve, and replace on elements. An element is a source module. It is naturally mapped
to a transfer item within a configuration item. The creation and deletion of XIs has been
described above. The ISTAR model does not allow for the replacement of Xls, except
under limited circumstances: if the X! is deletable, that is, if it is within a free Cl and does
not have a successor or vanant, then it can be deleted and a new Xl having the same
name can be exported. Fetching and reserving an element presented difficulties.

Given the decision to store baselines in libraries as frozen Cls, a user wishing to fetch an
element of the baseline must retrieve the entire baseline. It would have been possible to
circumvent that problem by placing each element of the baseline (each XI within the Cl)
into a Cl by itself. The problems such a solution raises outweigh the benefits. Consider
the situation confronting the programmer once he has completed his changes to an ele-
ment. He will want to create a new baseline, incorporating the element. He cannot do that
himself, if he has retrieved only the element from the library. He will need to instruct the
librarian to construct the new baseline. This is an error prone procedure.

The operation of reserving an element is not implementable in ISTAR. At most, ISTAR
will record the fact that a copy of the baseline was taken by the programmer at a certain
date and time. It will not associate the reinstallation of a successor baseline into the
library by the programmer with the act of taking a copy. In short, ISTAR does not support
a “check in/checkout” paradigm. If a programmer taking a baseline from a library wishes
to prevent other users from accessing it until he or she is done, the programmer must
request the librarian to prevent such access. But this will prevent all access to the base-
line. It is certainly desirable to have many programmers working on a product simul-
taneously if they are working on independent pieces. Thus even this hand-crafted solu-
tion to the element reservation problem will not be acceptable.

IST personnel have commented on this problem as follows [Stenning2 87].

CMU/SEI-88-TR-3 47

The general approach (within ISTAR) then is to have few tasks (contracts)
making changes to any one element at any one time, and ideally only one such
task. The coordination of these tasks is the responsibility of the coordination
contract. In particular, where for some reason it is necessary to have more than
one task simultaneously changing a single element, the coordination task is
responsible for planning and controlling any necessary interaction between
these tasks—ensuring that results from one are forwarded to another, merging
of the changed elements, or whatever.

Certainly simultaneous changes to a given element, in the sense of source module, must
be tightly controlled. Simultaneous changes to independent parts of a system need a
degree of coordination. However, as the previously cited reference goes on to say:

It is recognized that this notion that changes must always be planned and coor-
dinated in advance may be regarded as unduly restrictive in some contexts.
Should this occur, something along the lines of a check out/check in mecha-
nism could readily be implemented within a future release of ISTAR.

This last quotation indicates that lack of an element reservation operation is recognized
as a significant defect in ISTAR.

Although the configuration management experiment did not make any demands on a
traceability mechanism, the project management experiment did. Traceability in this con-
text is the ability to relate items via relationships other than successor or variant. The
DESIGN_FOR example given previously is one such relationship. Attempts were made
early on in the project management experiment to use user-defined relationships to im-
plement this form of traceability. These attempts were abandoned due to the excessive
manual effort involved, the perceived lack of reporting facilities and the inability to relate
items across contracts.

ISTAR offers no support for release control. The configuration management experiment
calls for the recording of the following kinds of information related to release control.

o What was built, when, and by whom

o Number of distributed versions

o Differences among versions

e Locations of each version

e Required hardware for each version

» Correlation between versions and error reports

 Correlation between versions and components

e Errors reported/fixed by version
The build tool will record “what was built, when, and by whom" and will correlate versions
with their components (the identity of XIs used to build a system). Otherwise, none of the
above information is recorded. As noted previously, the build tool does not build Ada
programs. The build tool, Pmak, is a rather user unfriendly program. It is organized
around building C programs. It is rather difficult to understand and use correctly. Proper
use requires cooperation from the programmer. Pmak examines the source modules

looking for pre-formatted entries giving the identities of objects, such as C libraries and
header files, on which the given program depends. When used properly, it is likely that

48 CMU/SEI-88-TR-3

Pmak is a powerful tool. However, proper use is not easily understood and, in any case,
does not apply to Ada.

We were favorably impressed with the problem reporting mechanism. As indicated in the
preceding list, it is not integrated with the configuration management system. Although it
is possible to record in the problem report the identity of the system release in which the
error is repaired, this is a manual operation accomplished by management policy and not
enforceable by ISTAR. There is no support for the inverse relationship; that is, there is no
support for determining, given a sysiem release, the identity of the problem reports it
repairs.

There is no support in ISTAR for the larger grained configuration management problems
such as that mentioned in the prior paragraph. Given a Cl successor, there is no auto-
mated support for the recording of such information as: why the successor was created,
the new facilities added by the successor, the errors repaired by the successor, the au-
thorization to create the successor, etc.

In summary, the configuration management support provided by ISTAR is at best
rudimentary. Essentially, ISTAR supplies version control and little else. Although the
basis of a configuration management system (that is, version control) is in place, a
powerful and useful configuration management facility for ISTAR is not.

3.3. Ada Workbench

The ISTAR Ada workbench provides a front end to an Ada compiler and syntax-directed
editing for Ada. This section details the functions of that workbench.

3.3.1. Description of Ada Workbench

Storage within the Ada workbench is divided into work areas. These work areas are not
specific to any contract. The user gets access to all his Ada work areas from each of his
contracts. Each work area has an associated Ada library. Upon entering the workbench,
the user is given a list of the work areas he or she has created. The user may select one
of those areas or create a new one.

Having selected a work area, the user is given a listing of the elements within the area.
An example of such a listing is given in Figure 3-25. This listing is interesting in its own
right. Each line of the listing (other than the first two, which are discussed later) identifies
an Ada compilation unit.'® The workbench insists that no two compilation units appear
together in a file. Notice that the type of the unit, specification, body or subunit, appears
on the listing as does the compilation status of the unit, compiled or not compiled. The
parents of subunits are clearly identified.

Selection of the FILTER item in the listing in Figure 3-25 gives the user access to a menu
which controls the work area element listing. An example of this menu appears in Figure
3-26. The PATTERN entry provides for regular expression matching on element names.
Only those elements whose names match the pattern will be listed. The remaining
entries restrict elements by type. The example specifies specifications, bodies and sub-
units to be listed, compiler and binder listings to be omitted, etc.

To work on or examine an element in the work area, the user selects it from the element

'3This listing may contain things other than compilation units. These are various compiler and tool message
listings. A complete list of types appears in Figure 3-26.

CMU/SEI-88-TR-3 49

~da Workbenzh V1.1 Insere ¥
,]
|Work area : BO1 Name : Type |
1Back-ups : Off I
Work Areas
[l Avallable Units
|1 NEW_UNI |
11 FILTER » [
11 RIN_SUPPORT SPECIFICRTION Compiled |
+| C1_SUPPORT B0DY Compiled [
| Cl1_SUPPORT SPECIFICRTION Compi led !
| COMMANO_INTERPRET BOOY Not compiled |
| COMMANO_INTERPRET SPECIFICRTION Not compiled |
| PERFORH_COMHAND SUB UNIT Compl led |
| lnRGE_nﬂNFKIER SF’ECIF] CATION Compiled]
Compi led I

mIN EXECUTQBLE |

| PRGE_TERMINAL 8o0Y : Compi led I

Figure 3-25: Listing of the Elements Within a Work Area

~da Workbenzh V1.1 Psttern

lrunﬂ(area : B0l Name @ Type @
|Back-ups : Off

Areas
bie Units
{ r (ptions
| IPattern
|

b —

|

¢ | |

|1 15Specifications vy |mpiled |

¢| |Bodies 4 iMPiled |

| I1Sub_ units Ly 1mpiled |

|iCompiler 1istings ¢ N It compiled |

| 1Binder iistings N It compiled |

|1Texr Fl1es : N Impi led l

| [Executable files @ ¥ 1mpi led |

|10bject Files N impiled |

| 1Compiled units S 7 | |

| 1Unconpiled units :: Impi 1ed |
: |

tillnked units

«:Ioo

Figure 3-26: The Filter Menu

listing in the standard way. To create a new unit, he or she selects the NEW_UNIT entry. In
that case, the user must give the name of the unit, which must conform to Ada syntax,
and its type, specification, body or subunit. For subunits, the name of the parent unit must

also be given. The workbench will allow subunits to be entered before the parent unit is
entered.

Having selected the item, the user may then use the ISTAR syntax-directed editor to
enter and modify Ada code. It is not the purpose of this report here to give a full descrip-
tion of syntax-directed editing in general nor of the ISTAR instantiation of it. Instead, a
brief overview is presented.

Suppose that the user has declared a new unit named Example_Unit of type body. Upon
entering the editor, the user is shown the screen given in Figure 3-27. The entry

a body
in that screen is a “stub” (a placeholder for syntactic categories). A stub is replaced by

the user with text which conforms to the syntax of the category. The stub in the example
must be replaced with an Ada body.

At this point, the editor does not know what class of body is to be entered, i. e., package,
subprogram or task. The user may overtype the stub by entering

50 CMU/SEI-88-TR-3

E<ample_Unit ¢ Booy ! Insere

B _nady

Figure 3-27: Initial Screen for a Newly Declared Body
procedure<CR>

and the editor will respond with the display shown in Figure 3-28. The editor now knows
that a procedure body is being entered and has supplied a skeleton. Notice that it has
supplied the procedure name given when the unit was selected. It will not allow the user
to supply a different name.

Example_Unit (ooy » Insert
5

Frocedu-effExample_Unit 1s
tegin

stacement
end;

Figure 3-28: A Skeleton Procedure Body

The user may now enter Ada code. The editor supplies normal text editing capabilities
such as character, word and line movement, insertion and deletion, and regular expres-
sion searching. It also provides syntax-oriented movement commands. In the Sun imple-
mentation, these are bound to function keys. The keys PREVIOUS TEM, NEXT ITEM, IN ITEM,
and ouT ITEM move the cursor to the appropriate syntax element. (The terms “in” and
“out” refer to levels of syntactic nesting.) The keys NEXT STUB and PREVIOUS STUB move
the cursor to the appropriate stub.

The display given in Figure 3-29 shows the result of entering some text into the
Example_Unit procedure. Notice that there are still some stubs in the display. The editor
will allow the user to delay the instantiation of stubs at the user's discretion. The
workbench will not allow a unit containing stubs to be compiled, however. Notice also in
the display that an item has been marked as “folded.” The FOLD operation is available for

CMU/SEI-88-TR-3 51

any syntactic item as a keystroke. Folding is a syntax-oriented method of controliing the
display. In the examp'e, the programmer is apparently uninterested in the subprogram

body which he has folded. He can now more easily ignore the text of that body while
working on the remaining code.

Eranple_Umit - Zocy

Tasert

rrocedu-e Exarple_Unit neub: in intejer:
Adenr siec @ - ps rack! 1s
tyee New Tyoe 1S - ze =i ee 3T ., J ee S0 - 1:
Quwiel e _tuyre - L@
SUDPTrogram_body S0LDED
teg.r

rnasement
ena;

-
l.l.'

Figure 3-29: A Partially Entered Procedure Body

Once all stubs have been either instantiated or deleted, the unit may be compiled. Com-
piler options may be set in a separate menu and remain in force for all compilations until
explicitly changed. It the compiler detects errors in the unit, the user is informed and may
re-edit the unit. The NEXT ITEM key will position the cursor to the next syntactic item
having an associated error message. A portion of the error message is displayed on the
screen. An example is given in Figure 3-30. The HELP key can now be used to toggle
between the program text and the error message listing. The error listing will be posi-
tioned at the error message associated with the item at which the program text is posi-
tioned. An example of this is given in Figure 3-31. Once an error-free compilation has
occurred, the unit can be bound and executed. Options for the binder and command line
options for the program can be specified in menus.

Example_unit ¢ 3oecy !

N gregefined integer type LS COMEat
grocedu=-e Exarple_Unit (Input: in integer) is

Bupe new_tyoe 1s range =2 ee 32 |, 2 ee 32 - 1:
quTmy: Aeu_tyce 1z 1;
subprogram_body -- FOLDED

ktegin

Esample_Prc:.cummy):

ena:

u;loc

Figure 3-30: A Compilation with Errors

The Ada workbench incorporates the Alsys Ada compiler.'* The workbench provides

4We do not know if IST has plans to accommodate cther compilers. We do know that they have no plans to
produce a compiler of their own.

52 CMU/SEI-88-TR-3

Example_Umit ¢ Socu/L 7

3 tupe reJ_type 15 range =2 e 32 |, I e~ 32 - 1:

1
*«IDE HNc oredefined 1nteger type 1s ccmoarible with this integer tyge def
- RM 2,5,¢ (8.

4 dummy: new_tupe = 1:

1 1
voIDE Tre declaration of th.s item :-orta.red on error. It cennot ve fully
1centified.

S prozeoure Examplz_CSub_Proc (X: i1n new_sype) is

~=IDE Tre declaratian 5f th:s 17em =arts:red an error. It cannot 2e Filly
icentified,

7 IR

>«IDE The declecetion 3f th._s i:em -orta.red an error, It cannot de fi lu

Flgure 3-31: The Result of Pressing HELP in Figure 3-30

interfaces to some of the compiler's auxiliary functions. For example, a DEPENDS menu
option will call the compiler feature which lists the library units dependent on a given unit.
These dependents are those units which must be recompiled if the target unit is modified.
There is no interface to the compiler feature that lists the units on which a given unit
depends, those units whose modification will cause the target unit to require recompila-
tion.

The workbench supports the compiler's ACQUIRE command. This command allows entries
that are pointers to units in other libraries to be made in an Ada library, thereby allowing
compilation units to be shared. The workbench-supplied interface to this command is
very useful. Having selected the ACQUIRE item from the local functions menu, the user is
given a display of the other libraries in his work space. Having selected one of the
libraries, the user is given a display of the units in the selected library, and may then
select units from that library to be ACQUIREd. This interface is much easier to use than
the text-oriented commands of the compiler itself.

The workbench also supplies a RECOMPILE operation which does not correspond to any
function directly supported by the compiler. The RECOMPILE operation causes all compi-
lation units in the work area whose status is “not compiled” to be compiled. The
workbench ensures that these muitiple compilations occur in an order consistent with the
Ada compilation order rules. The workbench will, at user option, run these compilations
as a background process. However, as Ada compilation causes the Ada library to be
modified, the workbench will not allow the user to perform any other actions in the work
area until the compilations terminate. Background recompilation is useful, therefore, only
if the user has work to be done somewhere else, either in another Ada work area or
another ISTAR tool.

The text of compilation units is kept in an internal format meaningful only to the syntax-
directed editor. This text is larger than the associated character string format, as it con-
tains a full parse of the text as well as much of the text itself. In order for the text to be
listed on a printer, for example, it must be converted to character string format. This is
accomplished by a copy operation. This operation also supports the conversion of
character string representation to internal representation.

CMU/SEI-88-TR-3 53

3.3.2. Analysis and Critique of Ada Workbench

The ISTAR Ada workbench is a powerful and productive tool for the creation of Ada code.
This power comes from syntax-directed editing and from the workbench-supplied inter-
faces to the compiler functions. These make the process of creating Ada code faster and
less error prone. The bulk of the comments in this section should be understood in the
context of our overall opinion of the workbench, which is quite positive.

We begin with the syntax-directed editor. The error messages produced by the editor
itself, in response to illegal text or commands, are the uninformative “Syntax Error” and
the even less informative “beep” Users of the VDM workbench can use the HELP key
from within the editor to display the underlying syntax tree, positioned at the syntactic
category which the editor is attempting to satisfy. Although the ISTAR syntax language
cannot be called user friendly or easily readable, a knowledgeable programmer can prob-
ably make enough sense of it to discern the problem. This facility was not implemented
in the Ada workbench. We were given a pre-release of the workbench, however, and it
may be that this feature, or some other improvement to the editor's error messages, will
be forthcoming.

The editor's syntax description language includes layout directives which ensure that the
text is always “pretty printed.” We found these directives to be somewhat too constrain-
ing, especially in conjunction with the poor error reporting mechanism. For example, the
directives will not allow two statements to be entered on the same line. If the user at-
tempts to do so, the second one is erased when the user tries to leave the line, as with a
carriage return. The editor will not allow the userto spiit the line nor will it attempt to split
the line itself.

The editor's Ada syntax descriptions differ in small but annoying ways from the syntax
accepted by the Alsys compiler. For example, a discrete range, something of the form /.,
must be entered with a <space> between the / (and the r) and the dots. The compiler
does not insist on that. The workbench allows units with names of arbitrary length to be
defined, consistent with Ada's lexical rules. However, it subsequently loses all but the first
seventeen characters of the unit's name, making the unit inaccessible. The workbench
allows unit names in mixed case. The Alsys compiler translates the name to uppercase
only, consistent with Ada syntax, which is case insensitive. The workbench then fails to
notice that a unit whose name is in mixed case has been successfully compiled. These
details belong to the class of bugs which are perhaps not uncommon in a pre-release
version of a software tool.

The editor's syntax description language is an extension of Backus-Naur Form (BNF).
This language is sensitive only to local or static syntax. It will not notice any errors whose
detection requires the use of a symbol table. Examples of such errors are undeclared
variables and type mismatches. These errors will remain to be detected by the compiler.

The interfaces to the compiler supplied by the workbench are a marked improvement
over the interface supplied by the compiler itself. There is one place in which the
workbench can be said to hinder the programmer. The ACQUIRE command can acquire
compilation units only from those work areas and Ada libraries owned by the program-
mer. It is not unreasonable for an Ada software development organization to have a
central Ada library containing reusable components meant to be shared by many pro-
grammers. Such a facility is not provided for by the Ada workbench. Given the ISTAR
philosophy on data storage organization, this may not be repairable.

The workbench provides no means for importing previously existing Ada code from UNIX.
This should be detrimental to a conversion effort. It is particularly unfortunate, given that
the workbench does provide a mechanism for converting character string representations
of Ada code to the editors internal, parse tree representation. Using our knowledge of

54 CMU/SEI-88-TR-3

ISTAR internals, we tried to handcraft a method of importing such pre-existing code. The
minor syntax discrepancies mentioned earlier, in conjunction with the poor error reporting
mechanisms, defeated us.

As constructed, the Ada workbench does not have a symbolic debugger. IST is not in the
business of providing such tools. Once such a tool becomes available, we would suspect
IST will have little difficulty incorporating it.

In conclusion, we reiterate our opinion that, in spite of the criticisms we have just made,
the ISTAR Ada workbench is a powerful and productive tool which greatly facilitates the
production of Ada code. We have not made any attempt to compare this workbench with
other facilities supporting the production of Ada code.

CMU/SEI-88-TR-3 55

CMU/SEI-88-TR-3

56

4. Other Workbenches and Tools

In this section we give brief descriptions of some of the ISTAR workbenches and tools
not covered in other parts of this report. We have used these tools sparingly, if at all.
Much of what is said in this section is, therefore, based on the content of the ISTAR user
manual and not on our own experience.

4.1. UNIX/C

The UNIX/C technical workbench supports ISTAR users’ access to the host UNIX environ-

ment. It provides an escape to the shell and provides for import and database infor-
mation.

The escape to the UNIX shell is via a workbench menu item and results in the user's
being placed in the $SHELL of choice. The $SHELL environment variable is inherited
from the shell used to initially invoke ISTAR. The forked shell's current directory is set to
the user's $HOME. The environment of the user’s initial shell is NOT fully replicated.
Exiting the shell returns the user to the UNIX/C workbench.

Files created from a shell can be imported to the ISTAR database via a menu-selected
command. If a directory is specified, a subtree is imported. The import/export operations
duplicate storage and do not merely “point” to the data within the UNIX file system.

There is also an interface with the system generation BUILD facility and BUILD_C and
BUILD_STR typed database objects. We did not use these mechanisms.

It is not possible to move objects from the UNIX file system to other workbenches. The
database types are different. For example, UNIX text files cannot be read into the text

workbench; Ada programs cannot be moved from the UNIX file system to the Ada
workbench.

The E editor recognizes “bang escapes” (!) to the shell. Regrettably, the identity of the
shell is not taken from the $SHELL variable, but is always /bin/sh.

4.2. Pascal

The Pascal workbench supports the development of Pascal programs. The central con-
tribution is a syntax-directed editor for the language. See the discussion of the Ada
workbench for a discussion of syntax-directed editing in ISTAR. Like the other language
centered tools (e.g., Ada), there are work areas in which programs are grouped. Pro-
grams can be exported to the database or imported into the work area. Code can be
compiled if a native compiler has been made available to ISTAR at installation time.

Most tools cannot read the transfer items generated by other tools. The Pascal tool can
read SX1 transfer items.

The help facility is limited. HELP is not context sensitive, and provides only a general

description of the tool. BNF-style language syntax is not provided when using the syntax-
directed editor.

CMU/SEI-88-TR-3 57

4.3. APCR

APCR (Analysis, Prompting, Checking, and Reporting) is a meta-tool for the creation of
“structured methods.” Such structured methods have entity types, relationships, and
properties of relationships. ISTAR stores the entities and relationships of the methods in
its database. APCR provides tool support for developing user's models: the Analyzer
checks model structure, the Prompter asks for information that must be supplied to com-
plete the model’s definition, the Checker uses advisory rules to detect possibly undesir-
able model aspects, and the Reporter interrogates the model. Each running model re-
quires its own definition and description.

Defining a method requires specification of the:

e method's language

o steps (operations) in the method (possibly recursive)

o algorithms for method definition and reporting

» activities within steps (information gathering, checking, reporting)
» database queries to support the previous two steps

¢ help files

» method driver and language definition files

The APCR workbench works both as a method definition facility and as a platform for
running user-defined methods. The workbench’s user interface is divided into generic
activities and method-specific activitiess. APCR workareas contain method definitions.
Workareas can be created, selected, deleted, imported and exported. Within a workarea,
files containing the various types of definitions can be viewed, printed, edited, deleted,
and copied. Database queries of the target method can be constructed, syntax-checked,
and executed.

Language operations permit the definition and analysis of the language used in the meth-
od. Step definition permits the definition and analysis of the steps in the method being
defined. Steps are distinct groups of operations performed in producing a specification
used in the method. Algorithm definition permits the definition and analysis of retrieval
and update operations to be performed on the specification database produced by the
users of the method. The operations are coded in the generalized query language
(GQL). Fact gathering permits the definition and analysis of steps in the method under
definition. E editor forms will be constructed so information can be entered while the
method is executing.

Example defined methods: CORE (Controlled Requirements Expression), GASSAID
(internal Imperial Software Technology, Ltd. structured design methodology).

The CORE method is available as one loadable language into APCR. CORE models are
composed of hierarchical levels of data and actions. Data and actions are integrated with
relations. Workbench menus permit entry of portions of the hierarchy, data/actions, and
relations. Numerous pre-defined relations can be placed between data and actions. For
example, the input_general_data_details menu relates data to data with parts_are,
has_level, has_attributes, and other relations.

58 CMU/SEI-88-TR-3

4.4. SX1

The SX1 workbench supports the SX1 method developed by British Telecom Ltd. SX1
models contain modules which can be compiled into a number of languages. The
workbench consists of:

o Editors for modules and line levels
« Graphical layout and presentation programs
¢ Code generators for: C, COBOL, Pascal and PLM

Standard ISTAR work area facilities for creation, selection, deletion, and import/export
are provided. Contents of the work area can be displayed as SX1 text or graphics, and in
the target languages that the SX1 can be translated into.

The module and line editors have the “feel” of the UNIX ed(1) editor. The ISTAR E editor
can be used in place of the line editor.

The graphical layout program and presentation create graphical views of the modules on
remote graphic instruction set (ReGIS) or Tektronix terminals.

Code generators produce output in the vanous languages mentioned above. Options on
output files, error listings, cross-references are available for each generator.

4.5. SDL

SDL (the System Description Language) was developed by CCITT for specifying concur-
rent software systems. The SDL workbench is logically a super-set of SX1. SDL models
have SX1 modules as their lower-level building blocks. SDL has a SYSTEM description
at the top level which defineés concurrent interactions. SDL's workbench can be defined
in terms of the added functionality beyond the SX1 workbench:

« Editing can be performed on the SDL description of the system or on the subsidiary
SX1 procedural fragments.

« Consistency checking can be performed between SDL and SX1 charts.

o Queries of various types can be made against the SDL portions of the model's de-
scription. Among the requests that can be completed are: what are the types of
variables mentioned in the SDL description, find a process within a block, list all
blocks within in a block, list connections between blocks, list all signals used by proc-
esses to communicate over a channel, and list the channels that carry a given signal.

¢ Reports on block connectivity, decomposition, block-to-process decomposition, and
process decomposition can be generated.

4.6. VDM

The Vienna Development Method (VDM) is a language for the formal specification of
software. ISTAR has syntax-directed editing for the British variant of the language, as
developed by STC [Walshe 85]. The tool is apparently unique among the syntax-directed
tools in ISTAR in that the HELP key, pressed while editing VDM text, displays the concrete
syntax tree at the point which the editor is attempting to satisfy.

CMU/SEI-88-TR-3 59

There is a type checking function listed for this tool. It has, however, yet to be imple-
mented.

4.7. RGL/RGT

ISTAR provides a report generation language (RGL) for retrieving information from its
databases and formatting printed reports. It also provides a front end to that language,
the report generation tool (RGT), which simplifies the use of the language.

As RGL retrieves data from ISTAR databases, it needs a description or model of the
database it is to access. RGT provides a set of such models. One of them, describing the
contract databases, is given in Figures 4-1 and 4-2. A model contains the names and
descriptions of the classes, or record types, stored in a database and the relationships
among instances of those classes. RGL uses the model to interpret the data in the data-
base. The person writing the report description uses the model to reference and constrain
the data in the report.

In the RGT, the report description is entered into a form template. A copy of such a form
is given in Figure 4-3. As can be seen in Figure 4-3, such forms are available to describe
the body, headers, and footers of the report. The report body in Figure 4-3 describes the
report given in Figure 4-4.

A report description such as that in Figure 4-3 consists of a sequence of lines. Each line
of the description will produce some number, possibly zero, of lines of the report. The
numeral to the left of the vertical line in the report description is the level of the line. The
lines are collected into text blocks. A text block consists of all lines which have the same
level number and are separated (if at all) by lines whose level numbers are all greater. All
the lines of a given text block appear, and if necessary repeat, together.

The square brackets ([]) in the lines of Figure 4-3 are place holders for data. The data
appearing in these positions are described in a template form available through a LocAL
functions command. An example appears in Figure 4-5. There is an entry in that form for
each field on the line. The relationship between place holders in the line and entries on
the form is positional; the first entry in the form describes the data to appear in the first
place holder on the line, etc.

The lines of a text block appear on the report for all possible ways in which the data they
contain can be instantiated from the database. If there are no such ways, the lines do not
appear. Notice in Figure 4-4, that only two of the transfer items listed have been imported
into any work area. The remaining items do not have the associated text block (level 3 in
Figure 4-3.)

If the report described in Figure 4-3 were not constrained, it would list all the configuration
items within the contract against which it was run in combination with all the transfer
items of all the configuration items in that contract, in all possible combinations, without
regard to whether the X| appears within the Cl. The constraint language of the RGT
allows the report access to the relationships in the database. This allows the report to
contain the intended result. The constraints which were used to produce Figure 4-4 are
listed in Figure 4-6. They ensure that the Xlis are elements of the selected Cl, etc. They
also restrict the report to contain only information on the last successor of the Cl BO1.

The RGT allows for rapid production of simple reports from a single database. As can be
seen from Figure 4-4, it is difficult to have close control over the format of the report. It is
impossible to collect information from more than one database into a single report.

60 CMU/SEI-88-TR-3

class CONFIG_ITEM

attribute
MESSAGE_NUMBER : string
FROM CONFIG_ITEM : string
FRQ&_PARTITION : string
FROM CONTRACT : string

end class

class CI_SIGNATURE

attribute
DESCRIPTION : string
STATUS : string
RECORDED_TX : string
UN_RECORDED_TX : string

end class

class CI_LIST
end class

class USER_XI
end class

class XFER_ITEM

attribute
DESCRIPTION : string
PACKED XI : stxring
TYPE : string
DATE_TIME : string

end class

class XI_LIST
end class

class WORK_AREA
attribute

TYPE : string
end class

relationship HAS_ SIGNATURE :: SIGNATURE_OF
classes CONFIG_ITEM :: CI_SIGNATURE
complexity many :: one
optionality compulsory :: compulsory

end relationship

relationship HAS_LATEST CI :: LATEST CI_OF

classes CI_LIST :: CONFIG_ITEM
complexity one :: one
optionality cocmpulsory :: optional

end relationship

Figure 4-1: The Data Model of a Contract Database

CMU/SEI-88-TR-3

61

relationship HAS PREFERRED CI

classes CI_LIST
complexity one
optionality optional

end relationship

relationship HAS LATEST XI
classes XI_LIST
complexity one ::
optionality compulsory ::

end relationship

relationship HAS PREFERRED XI

classes XI_LIST
complexity one
optionality optional

end relationship

relationship CONTAINS_ XI
classes CONFIG_ITEM ::
complexity one
optionality optional

end relationship

relationship HAS REAL XI NAME

classes USER_XI ::
complexity many ::
optionality compulsory

end relationship

relationship IS_BASED ON ::
classes XFER_ITEM
complexity many ::
optionality optional

end relationship

relationship IS _BASED_ON ::
classes CI_SIGNATURE ::
complexity many ::
optionality optional

end relationship

relationship IMPORTED_BY ::
classes USER_XI :

complexity many ::
optionality optional

end relationship

relationship EXPORTED_BY ::
classes XFER_ITEM ::
complexity many
optionality optional

end relationship

: PREFERRTED_CI_OF

CONFIG_ITEM
one
optional

LATEST_XI_OF

:: USER XI

one
optional

PREFERRTED_XI_OF
USER_XI

one

optional

:: XI_PART_OF

USER_XI

:: many

compulsory

REAL_ XI_NAME OF

: XFER_ITEM

one
compulsory

IS_BASIS_OF

:: XFER_ITEM

one
optional

IS_BASIS_OF
CI_SIGNATURE
one

optional

IMPORTS

: WORK_AREA

many
optional

EXPORTS
WORK_AREA
one
optional

Figure 4-2: The Data Model of a Contract Database contd.

62

CMU/SEI-88-TR-3

vioe.a

Feport Generating Tool V2.2:IMExp2.1
>

[
Imported Ey [1
Q

| status | | report_body | Report Body
| edit script | | page_header | r 9
filter operations		page_footer	Il The Configuration Item named (] has latest weraion (]	
generate report		constraints		11t arrivec in this contract from 2 (2
vieusedir RGL output		orderings	1111ts status 1s (] and its description 1s (]	
print RGL output		quit	111 The %I°s fal.iow 1n tae farmat	
rav	D — 4	§l name/tyce date_time/from workarea’/intd workarea (oetl		
list 1	21			
deiete 1 213 7/ 7 01 7 (2 tupe (]				
mode! [13				
L i 12

]

|

1

|

|
|
|
|
|
|
|

Figure 4-3: The Description of a Report

The RGT generates a program in RGL which in tum produces the report. RGL is a C-like
language augmented with functions to access ISTAR databases. The RGL generated by
RGT is available to be edited by the programmer. in RGL it is possible to access data
from multiple databases owned by the ISTAR user running the report.

CMU/SEI-88-TR-3 63

The Configuration Item named BOl() has latest version BOl(3)
It arrived in this contract from
Its status is FROZEN and its description is Created by marc on 87/12/01_17:20

The XI’'s follow in the format
nann/typ./dnt._pimn/tron workarea/into workarea (optl)

BO1(3) +AIMSUPPORT (1) / m_spr.c / 87/08/04_16:56 / BOl type ADA_SPEC
Created by marc on 81/08/04_16:56

BO1 (3) +CISUPPORT (1) / ADA_BODY / 87/08/04_16:56 / BOl type ADA_SPEC
Created by marc on 87/08/04_16:56

BO1 (3)+CISUPPORTB(1l) / ADA_SPEC / 87/03/04_15 :56 / BOl type ADA_SPEC
Created by marc on 87/08/04_16:56

BO1(3)+MAIN(1) / ADA_BODY / 87/08/04_16:58 / BOl type ADA_SPEC

Imported By AdaExp
Created by marc on 87/08/04_16:58

BO1(3)+PGETRM(1) / ADA_SPEC / 87/08/04_16:58 / BOl type ADA_SPEC
Created by marc on 87/08/04_16:58

BO1 (3)+STRUTLB(1) / m_aonr / 87/08/04_16:59/ BOl type ADA_SPEC
Created by marc on 87/08/04_16:59

BO1 (3)+STRUTL(1) / ADA_SPEC / 87/08/0l_16:59 / BOl type ADA_SPEC
Created by marc on 87/08/04_16:59

BO1(3) +VWPRTMGR(1) / ADA_SPEC / 87/08/04_17:00 / BOl type ADA_SPEC
Created by marc on 87/08/04_17:00

BO1(3)+VTSUPP(1l) / ADA_SPEC / 87/08/04_17:00 / BOl type ADA_SPEC

Inmported By AdaExp
Created by marc on 87/08/04_17:00

BO1 (3) +WNDWMGR (1) / ADA_SPEC / 87/08/04_17:01 / BOl type ADA_SPEC
Created by marc on 87/08/04_17:01

BO1 (3) +MAIN (VTSUPP,1l) / ADA_BODY / 87/09/04_15:46 / BO2 type ADA_UNIT
Created by marc on 87/09/04_15:46

BO1(3)+PGETRMB(1) / ADA_BODY / 87/09/04_15:56 / BO2 type ADA_UNIT
Created by marc on 87/09/04_15:56

Figure 4-4: The Report Generated by Figure 4-3

64 CMU/SEI-88-TR-3

vieeon

Report Generating Tool Vv2,2:IMExp2.1 Number cf fields 2
>

starus report_body | Report Body
age_header |

|
edit script | B r -
filter operations | page_footer | 1! The Configuration Itsm named (] has laress version [)
generate report | constraints | fFileid Infornat
vieu/edit RGL output | orderings | IField Namne ¢

| qQuit | IField Size @ 2 |
e e IField Expr ¢ CI_LIST._name |

1

IField Name @
IField Size : 2 |
|Field Expr ¢ CONFIG_ITEM,_name |
[

print RGL output
rau

list

deiete

nodel

SRy S

|
| !
| |

Figure 4-5: The Fields on the First Line

CI_LIST. name == "BO1()"

CI_LIST : HAS_LATEST CI : CONFIG_ITEM
CONFIG_ITEM : HAS_SIGNATURE : CI_SIGNATURE
CONFIG_ITEM : CONTAINS_XI : USER_XI
USER_XI : HAS_REAL XI_NAME : XFER_ITEM
XFER_ITEM : EXPORTED_BY : WORK_AREA[1]
USER_XI : IMPORTED_BY : WORK_AREA[2]

Figure 4-6: The Constraints Used in Producing Figure 4-4

CMU/SEI-88-TR-3

65

CMU/SEI-88-TR-3

66

5. Overall Quality and User Experience

ISTAR is a relatively new product and has as yet only a handful of users. With the help
of IST, we contacted three of those users and asked them to respond to a questionnaire.
A copy of that questionnaire appears at the end of this section. Two of the users we
contacted returned the questionnaire. (In one case we received two responses from sep-
arate organizations within the responding corporation.) In order to protect their identities,

we will not publish their answers, but rather summarize them. Our comments are also
based on our conversations with IST personnel.

Use of ISTAR by its customers tends to be experimental. It is generally used by tech-
nology transition and assessment groups within the customer's organization. One of our
respondents has begun use of ISTAR on a line project employing twenty developers over
two years and generating an estimated 100,000 lines of Ada code.

By far the most popular are the project and configuration management tools. Of the
technical development tools, only the Ada workbench was mentioned. All of our respon-
dents mentioned that they were engaged in extending ISTAR's functionality. One of them
has developed tools for ISTAR amounting to some 30,000 lines of C. None of them made
any mention of the UNIX/C workbench or the build tool.

The opinions held by our respondents of IST as a software vendor were mixed. One
respondent stated that response tc error reports was uneven, even for critical errors..

Another that critical errors were always fixed promptly. Our own experience is that critical
errors were always fixed promptly.

One of our respondents did not use IST training. The other did, and had mixed reactions.
The tool builder's training was excellent, they stated, but the user training needed im-
provement. They made their concerns known to IST and felt that IST would respond
appropriately. We did not use IST training.

One of our respondents stated dissatisfaction with the ISTAR documentation, which
tends to be detailed descriptions of tool interactions rather than guidelines for using the
tools. IST has recently rectified this situation by publishing a collection of overviews.

All our respondents pointed out that IST is a small company which occasionally overcom-
mits itself, causing delays in their product releases.

All our respondents had a positive overall opinion of ISTAR; all are planning to increase

its use within their organization and would recommend it to others. Among the strengths
they listed were:

» the contract model

« inherent configuration management

e integration of development and rnanagement
» extensibility

The weaknesses mentioned included:

e lack of robustness
» poor performance

» missing functions in project and configuration management (details not given)

CMU/SEI-88-TR-3 67

o difficulty of report generation

We maintained an error log throughout the course of evaluation of ISTAR. It contains 95

items, of which 49 are classified as “errors,” that is, clear deviations from the published
documentation.

CMU/SEI-88-TR-3

SEI - ISTAR Questionnaire

The Software Engineering Institute, a (US) federally funded research and development
center, is preparing a report on the Software Engineering Environment ISTAR. We are
basing our report in part on our own experimentation with ISTAR and in part on the
experience of the ISTAR user community. We would be very grateful if you would take
the time to give us the information requested below. Please be assured that this infor-
mation, when published, will not be attributable to any individual nor organization.

A. Please give us a list of those projects which you know to be using ISTAR. For each
such project please give
* A title and brief description of the project.
¢ The size of the project. (Please give any and all metrics with which you are comfor-
table: budget, number of personnel, size of software product, any other which you
can describe.)
e Is the project experimental? Does it have a deliverable to an organization outside (i)
the project team; (ii) the company?
e How many individuals on the project are active ISTAR users? Can you characterize
the number of people whose usage exceeds (i) 2 hours a day; (ii) 2 hours a week; (iii)
2 hours a month; (iv) 0 hours. (Please give the basis of your estimate.)
* How long has this project been using ISTAR? How long has the project been under-
way?

B. Below is a listing of the Workbenches available from IST and the tools within each
workbench. Please indicate the extent to which each project listed above uses each tool.
Please be as specific as you can concerning how, to what purposes and to what extent
each tool is used.

General Project Management
Text work breakdown
Timesheet estimation - cocomo
scheduling
Technical Development task definition
ada monitoring
unix/c report generation
pascal
sxi . Resource Management
sdl resource control
vdm resource definition
Configuration Management QA Management
Component management QA Management
Build
Contract Operations
Tool Development assign, deliver, etc.
APCR
CMU/SEI-88-TR-3 69

If you use aspects of ISTAR which are not listed above, please list them with their usage.

For example, does your organization use the admin functions of contract sharing and
archiving?

C. Has your organization extended or modified ISTAR in some way? For extensions to
ISTAR, did these take the form of code written by your organization or tools purchased
from a third party and integrated into ISTAR (or both)? For code written in house, please
describe '

o the functionality of the tool;

e the language used;

o the size of the tool in lines of code;

o the success of the effort. (Is the too! used for its intended purpose?)

For tools purchased from third parties, please give

o the name of the tool and the company from whom purchased;
o the functionality of the tool;

o the success of the effort. (Is the tool used for its intended purpose?)

D. Please evaluate IST as a software vendor. Has their level of support been adequate?
Have they responded well to error reports? Have you utilized their training facilities,
courses and materials? Were they adequate?

E. Please give your opinion, and the opinion of your organization, concerning ISTAR.
Please give your view of ISTAR's strengths and weaknesses. Does your organization
plan to increase or decrease its use of ISTAR? Would you recommend the system to
others?

70 CMU/SEI-88-TR-3

6. Conclusions

ISTAR is a software development and project management environment integrating man-
agement and technical development activities. It is based on as the contract model,
whose primary objective is that every individual in the organization know what is ex-
pected of him or her. To accomplish this, the relationships among the individuals of the
organization are modeled as contracts. Each contract has a specification of the work to

be performed under it, a person to whom it has been assigned, and a person for whom
the work is being done. '

ISTAR does not mandate any technical development strategy. It does not enforce any
management style. its philosophy is not to make decisions, but rather to record decisions
made by its users so that they are visible to the organization.

ISTAR's data storage model divides storage into contract databases, in which public or
semi-public information is kept, and work areas, which are private to individuals. All data
manipulation is done to data stored in work areas. For information to be shared among
ISTAR users, it must be moved to & contract database, where it first comes under config-
uration control, and thence possibly to a library.

ISTAR's project management tools cover estimation, planning, scheduling, task assign-
ment, and tracking of projects during execution. They give management control over
resources and insight into work in progress. They do not react well to changes in project
structure after execution has begun.

ISTAR has rudimentary configuration management support. It will control versions and
parallel lines of development, but only for objects stored in contract databases. It has no
equivalent of checkin/checkout for configuration-managed items. it has no release man-
agement capability. Its system build facility does not operate on Ada code. It has a so-
phisticated problem-reporting mechanism but does not integrate it with the configuration
management system.

ISTAR's technical development facilities are supported by syntax-directed editing facil-
ities for Ada, Pascal, and other languages. This capability is a generalized feature of its
standard editor, which also provides a forms-oriented editing feature. The editor is the
sole user interface to ISTAR, providing considerable uniformity to that interface.

ISTAR is an emerging product. Its development philosophy is

to support what we regard as the four critical ‘dimensions’ of any
project—project management, technical development, configuration manage-
ment, quality control—and (most important) the coordination of these four
dimensions. The basis of cocrdination is provided by the contract model and
the corresponding contract databases.

To date, virtually all our effort has been concentrated in two areas: [the con-
tract model and databases] and project management. In the other areas we
have provided only the most basic of facilities [Stenning2 87].

A software development organization wishing to introduce an integrated support environ-
ment into its operation has a variety of implementation choices. It may decide to hand-
craft an environment from existing and newly developed tools, or it may acquire an envi-
ronment framework upon which to build. To our knowledge, there are no environments
currently available which can be installed and used unmodified, and it is unlikely that any
such environment will appear in the near future. An organization wishing to build on an
existing framework should consider ISTAR a candidate system.

CMU/SEI-88-TR-3 7

CMU/SEI-88-TR-3

72

Bibliography

[Boehm 81]

[Booch 83]

[CMGuide 87]
[CMRef 86]

[Dowson 87]

[Feiler 88]

[Habermann 83]

Boehm, Barry W.
Software Engineering Economics.
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1981.

Booch, G.
Software Engineering with Ada.
Benjamin/Cummings, Menlo Park, CA, 1983.

ISTAR Configuration Management Guide,
Issue 1 edition, Imperial Software Technology, 1987.

Component Management System User Guide,
Issue 2, 5001/67 edition, Imperial Software Technology, 1986.

Dowson, M.
Integrated Project Support with ISTAR.
IEEE Software :6-15, November, 1987.

Feiler, P.

Project Management Experiment: Final Report.

Technical Report CMU/SEI-88-TR-7, Software Engineering Institute,
Carnegie Mellon University, 1988.

Habermann, A.N., Perry, D.E.
Ada for Experienced Programmers.
Addison Wesley, Reading, MA, 1983.

[Imperial Software Technology 87]

[Leblang 85]

[Stenning1 87]

[Stenning2 87]

[Tsichritzis 82]

[Walshe 85]

[Weiderman 87]

ISTAR Project Management Guide,
Issue 1 edition, Imperial Software Technology, 1987.

Leblang, D.B., McLean, G.D.

Configuration Management for Large-Scale Software Development Ef-
forts.

in Workshop on Software Engineering for Programming-in-the-Large.
Harwichport, MA, June, 1985.

Stenning, V.

On the Role of an Environment.

In Proceedings of the 9t International Conference on Software
Engineering, pages 30-34. IEEE Computer Society Press, 1987.

Stenning, V.

Notes on ISTAR configuration management.
private communication.

May, 1987

Tsichritzis, D. C., Lochovsky, F.H.
Data Models.
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1982.

Walshe, A., Shaw, R.
Concrete Syntax for the STC VDM Reference Language.
Standard Telephone and Cable. 198S.

Wiedermann, N., et al.

Evaluation of Ada Environments.

Technical Report CMU/SEI-87-TR-1, Software Engineering Institute,
Carnegie Mellon University, 1987.

CMU/SEI-88-TR-3 73

CMU/SEI-88-TR-3

Appendix A: Generic Experiment Steps

The following are the generic steps involved in each of the experiments executed against
ISTAR.

A.1. Configuration Management

The generic configuration management (CM) experiments will be developed with the as-
sumption that a baselined Ada system already exists; furthermore, all experiments will be
done relative to this baselined system state. As such, the first step in developing an
evaluation experiment #1 is the specification of this baselined system configuration; the
second step is then the development of generic experiments to evaluate an Ada
environment's support of configuration management activities.

Baselined System Configuration

For the sake of credibility, the Ada system model upon which the configuration manage-
ment experimentation will be based was designed to fulfill the following requirements:

» The system must be large enough to address configuration management and version
control issues, yet small enough to be implemented within the context of the evalu-
ation project (approximately 20 Ada compilation units).

¢ The current state of the system must coincide with a particular phase of the software
life cycle (e.g., system integration).

* Minimally, three levels of Ada compilation unit dependencies should be represented
(e.g., Package Specification, Package Body, Subprogram Body).

* The Ada system must be designed in a manner that warrants the use of Ada’s sepa-
rate compilation feature.

* The Ada system must be designed in a manner that is amenable to variant branch
development.

* The Ada system must be comprised of at least two logical subsystems in order to
support development by more than one software engineer.

Given these system requirements, an Ada system model (see Figure A-1), which is
simple, yet supports separate development and testing, has a hierarchical structure, con-
tains various compilation dependencies, and lends itself nicely to system integration acti-
vities, was chosen in order to evaluate an environment’'s support of key configuration
management activities. It should be noted that the system integration phase of the soft-
ware life cycle will serve as the context of the CM evaluation experiments.

A.1.1. Configuration Management Experiment #1

Given the Ada software system (Figure A-1), the following generic steps will serve as an
initial evaluation experiment and will furthermore establish a baseline configuration
(Figure A-2) that will be used as a basis for all other experiments in this evaluation. The
configuration management mode! presented in Figure A-2 is a pictorial representation of
a configuration thread view of the overall system [Leblang 85].

Note: All data file size recordings and all timing measurements (indicated below in italics)
should be logged into a file named Recordings in the experiment's home directory. Fur-

CMU/SEI-88-TR-3 75

CLi

AIM_SUPPORT

vT fA

VT_SUPPORT CI_SUPPORT

STR_UTILITIES

1

|

?

PAGE_TERMINAL | §] CI_SUPPORT STR_UTILITIES

GAGE_TERMINAL ' COMMAND_INTERPRETER GO

HMAND_INTERPRETER)

/;ERFOR M_C OMMAND/

;

v

IMAGE_MANAGER |—@»{ VIEWPORT_MANAGER |~

WINDOW_MANAGER

(IMAGE_I‘ANAGER) (VIEWPORT_MANAGER) (

WINDOW_MANAGER)

SM

Legend E PACKAGE SPECIFICATION

—— UNIT DEPENDENCY

CD PACKAGE BODY : SUBPROGRAM BOOY

Figure A-1: Evaluation System Model

thermore, each of the logged measurements should be labeled in some discernible fash-

ion.

1. Experiment setup

a. Create subdirectory in which the experiment will be performed.

b. Establish environment variables to be used in the experiment.

c. Develop a command named record to collect data file size measurements.

d. Develop a command named timelt to collect execution
any environment command.

time measurements for

2. Establish Ada program library structure for system integration.

76

CMU/SEI-88-TR-3

3. Copy existing subsystems into integration program library structure (see Appendix
3.A). Assume the existence of logical names: VT, CLI, SM, and MAIN, which are
symbolic links to directories containing the source code of the respective subsystems.
Using these logical names, copy all the files in each of the indicated source direct-
ories (VT, CLI, SM, and MAIN) into the integration program library structure. Record
initial source file sizes.

4. Define a new (integrated) system model from existing subsystems. This system
model specifies the compilation dependencies in effect when integrating all of the
individual subsystems.

5. Build an executable load module named AIM_B01_EXE from all the Ada source code
files; use the system model defined in Step 4 where appropriate. Measure time taken
to perform the build. c ‘

6. Construct a confiéuration baseline named BO0.1 of the current system. Measure time
taken to create the CM files. Record initial sizes of CM files. Measure time taken to
perform baseline operation.

7. Parallel test integrated system using 3 variants of main program (MAIN.A, MAIN.B,
MAIN.C). Measure time for single file fetch, reserve, and replace operations.

MAIN.A - test VT interfaces
MAIN.B - test CLI interfaces
MAIN.C - test SM interfaces

a. Test VT interfaces

i. Build executable load module named VT_MAIN using MAIN.A as the main
program. Measure tima taken to perform the build.

ii. Fix bugs in VT body (using variant line of descent). Measure time taken for
creating a vanant line of descent. Measure CM file size increase caused by
variant.

iii. Construct a configuration baseline named B0.2 of the current system using
MAIN.A as the main program. Record current sizes of CM files. Measure
time taken to perform baseline operation.

b. Test CLI interfaces

i. Build executable load module named CLI_MAIN using MAIN.B as the main
program. Measure time taken for creating a vanant line of descent. Measure
CM file size increase caused by vanant. Measure time taken to perform the
build.

ii. Fix bugs in MAIN.B

iii. Construct a configuration baseline named B0.3 of the current system using
MAIN.B as the main program. Record current sizes of CM files. Measure
time taken to perform baseline operation.

c. Test SM interfaces

i. Build executable load module named SM_MAIN using MAIN.C as the main
program. Measure time taken to perform the build. Measure time taken for
creating a vanant line of descent. Measure CM file size increase caused by
vanant.

CMU/SEI-88-TR-3 77

ii. Add new interface to Viewport_Manager package (using variant versions).
Measure time taken for creating a vanant line of descent. Measure CM file
size increase caused by variant.

iii. Re-build executable load module named SM_MAIN with new version of the

Viewport_Manager. Test new interface along with previous interfaces of the
SM. Measure time taken to perform the build.

iv. Construct a configuration baseline named B0.4 of the current system using
MAIN.C as the main program and the new versions of the Viewport Manager.

Record current sizes of CM files. Measure time taken to perform baseline
operation.

8. Merge bug fixes and enhancements back into main fine of descent for:

a. Main program
b. VT package body

¢. VM package specification and body

Measure time to perform merge operations. Record CM file size increases caused-by
merge operations.

9. Add prologues to package specifications and bodies. Measure time for single file
reserve and replace operations.

10. Construct a configuration baseline named V1.0 of the current system. Record current
sizes of CM files. Measure time taken to perform baseline operation.

11. Build executable load module named Product using all current source code.

A.1.2. Configuration Management Experiment #2

The purpose of this generic experiment is to investigate a programming support
environment's support of pure configuration management activities such as: system con-
struction, re-construction of previously generated baselined systems, and construction of
hybrid (a mixture of new and old) systems. Successful completion of Configuration Man-
agement Experiment #1 is assumed for the context of this experiment.

1. Experiment setup

a. Establish environment variables to be used in the experiment.

b. Change working directory to the system_Integration directory created in Exper-
iment #1.

¢. Create a new program library named bulld_llb underneath the sys_integration
directory.

d. Confirm that no files are currently reserved.

e. Remove any pre-existing copies of files used throughout the experiment.

2. Display configuration management historical information pertaining to the current
state of the system. Measure time taken to display historical information.

3. Fetch all the Ada source code files belonging to the B0.4 baseline and build an ex-

78 CMU/SEI-88-TR-3

OTHERS VM_SPEC vM_BODY VT_BOOY MAIN

PC 30X XX XX .‘

® z O

AN N fnmuunn] AAAAAA (AR R R RN

80.1 80.2 30.3 80.4 80.5
V1.0

Figure A-2: Configuration Model Resulting from Performing Steps in Experiment #1

ecutable load module named Version0.4. Measure time taken to fetch the source
files in the B0.4 baseline. Measure time taken to perform the build.

4. Move the STR_UTILITIES package specification and body of the current system
(V1.0) into the local copies of the AIM_SUPPORT package specification and body.
Recompile compilation units as necessary.

5. Fetch the current version (from baseline V1.0) of the
COMMAND_INTERPRETER.PERFORM_COMMAND subprogram. Measure time
taken to perform fetch operation.

6. Generate an executable load module named Product using the Ada source files

presently in the experiment's source code directory; perform this system build using
the pragma SUPPRESS to disable the following checks during the translation phase:

¢ access_check

¢ discriminant_check
¢ index_check

e length_check

o division_check

e overflow_check

e elaboration_check

Measure tirme taken to perform the build.

CMU/SEI-88-TR-3 79

7. Remove the configuration management file elements associated with the specifica-

tion and body of the STR_UTILITIES package. Measure time taken to perform
remove operation.

. Add prologues to all Ada source code contained in the experiment's code directory.

. Construct a configuration baseline named V1.2 of the current system. In making this’
baseline, each source code file in the experiment's code directory should be com-
pared against the latest version aiready baselined in version V1.0; only if the local
copy is different (i.e., more up to date) than the aiready existing CM element shall it
be placed into this new system baseline. Measure time taken to perform the compare
operations. Measure time taken to perform baseline operation.

A.1.3. Configuration Management Experiment #3

The purpose of this generic experiment is to investigate a programming support
environment's support of product release control. Successful completion of Configuration
Management Experiments #1 and #2 is assumed for the context of this experiment.

1. Experiment setup

a. Establish the product information database to be used as the initial state using the

following information:

i. Release B0.1
General Comments:
Beta test version of the system.

Build History:
Date built: 2/15/85. Built by John R. Johnson.

Release Components:
Version 1 of all source code files.

Hardware Requirements:
VAX 11 class machine; VMS 3.x.

Customer distribution:
Customer A.

Errors reportedffixed:
None.
ii. Release B0.2
General Comments:
Fixed bugs in body of Virtual Terminal package and the main
program; all other modules remained the same.

Build History:
Date built: 3/11/85. Built by James T. Smith.

Release Components:
Versions 1A+ of MAIN.ADA and VT_BODY.ADA; version 1 of
all other source code files.

Hardware Requirements: .
VAX 11 class machine; VMS 3.x.

Customer distribution:
Customer D, Customer G, and Customer J.

Errors reported/ffixed:
Virtual terminal did not refresh screen properly. Virtual termi-
nal did not gracefully handle invalid cursor positions.
iii. Release B0.3

80

CMU/SEI-88-TR-3

l
et

General Comments:
Fixed deadlocking problems (independent of version B0.2

fixes) in the main program; all other modules remained the
same.

Build History:
Date built: 3/16/85. Built by James T. Smith.

Release Components:
Version 1B+ of MAIN.ADA,; version 1 of all other source code
files.

Haraware Requirements:
VAX 11 class machine; VMS 3.x.

Customer distribution:
Customer B, and Customer H.

Errors reported/fixed:
Main program deadlocked during startup when certain excep-
tions were raised.

iv. Release B0.4

General Comments:
Fixed sizing problems related to viewports; effected both the
specification and body of the Viewport Manager package.
Upgraded to run under next major revision of the operating
system. :

Build History:
Date built: 3/27/85. Built by Jane C. Doe.

Release Components:
Version 1C+ of MAIN.ADA, version 1A+ of VM_SPEC.ADA
and VM_BODY.ADA,; version 1 of all other source code files.

Hardware Requirements:
VAX 11 class machine; VMS 4.x.

Customer distribution:
Customer C, Customer E, and Customer .

Errors reportedffixed:
Invalid viewport sizes caused PROGRAM_ERROR. Fixed
problem by constraining the size of a viewport than allowing it
to be sirnply an INTEGER.

v. Release V1.0

General Comments:
Incorporated bug fixes from previous parallel releases (B0.2,
B0.3, B0.4); also added prologues to every source code file.

Build History:
Date built: 4/12/85. Built by Jane C. Doe.

Release Components:
Version 6 of MAIN.ADA, version 3 of VT_BODY.ADA,
VM_SFEC.ADA, and VM_BODY.ADA; version 2 of all other
source code files.

Hardware Requirements:
VAX 11 class machine; VMS 4.x.

Customer distribution:
Customer F and Customer K.

Errors reported/fixed:
None.

CMU/SEI-88-TR-3 81

vi. Release V1.2
General Comments:
Reverted back to B0.4 and added SUPPRESS pragmas to in-
crease system performance.
Build HistoryDate
built: 5/2/85. Built by John R. Johnson.

Release Components: :
Most recent version of source code files.

Haraware Requirements:
VAX 11 class machine; VMS 4.x.

Customer distribution:
No distribution to date.

Errors reported/fixed:
None.

b. Establish environment variables to be used in the experiment.

c. Change working directory to the system_Integration directory created in Exper-
iment #1.

d. Create a new program library named product_lib undemeath the sys_integration
directory.

e. Confirm that no files are currently reserved.

f. Remove any pre-existing copies of files used throughout the experiment.

2. Display configuration management historical information pertaining to the current
state of the system. Measure time taken to display historical information.

3. Generate an executable load module named Product using the Ada source files
presently baselined as V1.2. Release this new version to all customers running
release B0.4 or later. Update product information accordingly. Measure time taken

to perform the build operations. Measure time taken to perform database update
operation.

4. Fetch all the Ada source code files belonging to the B0.3 baseline and build an ex-
ecutable load module named Version0.3. Release this version to all customers run-
ning release B0.2 or earlier. Update product release information accordingly.

Measure time taken to perform the build operations. Measure time taken to perform
database update operation.

A.2. Project Management

The experiment consists of concurrent activities by multiple people. Because it is difficult
to describe concurrent activities in sequential form as experiment steps, we have organ-
ized the experiment steps into groups that represent the roles of different people, such as
customer, manager, and documentation group. The interaction between the roles should
be identifiable from the scenario description above and from the passing of deliverables
or information. Within each role, the experiment steps are described in temporal order.

We cross-reference to project management activities using a numbering system com-
posed of the initials of a major category, followed by the group number, followed by the

82 CMU/SEI-88-TR-3

-

activity letter. For example, activity PDM-3.a refers to the major category Product Man-
agement, group 3, activity a: Checking adherence to standards, listed on this page.

We cross-reference to questions using a numbering system consisting of the first letter of
the criteria (F, P, Ul, Sl), followed by the number of the question category, followed by a
lower-case letter indicating the specific question(s). For example, question UI3c refers to
the User Interface criteria, category 3, part c: How complete, concise, and appropriate is
the documentation? shown on the previous page.

A.2.1. The Experiment Setup

The steps listed here must be done before the actual experiment can be carried out.
Setup includes setting up the environment's development database to contain the initial
release of the system, as well as tailoring the environment to a specific organization or
project.

In addition, the person instantiating the experiment on a particular environment
will have to determine the appropriate mechanisms for collecting timing and
size information to answer performance questions.

First, set up the development database. Then initialize the environment with project-
specific parameters regarding this experiment.

CMU/SEI-88-TR-3 83

V1.0

reiease 1.0

Vi Vi.2.1 V1.2.2 V13

fix #3&4 fix #6 i
fix #7 fix #2
by Team 1 by Team 2 by Team 2 by Team 3

N S

V1.2

merged fix #6&7
by Q/A Team

Y
Vi4

release 1.1

ul: CLI SM vT

[————— | V1.2 V1.1 [V1.0

Release 1.0:

ARNRANNANNNNNNY

Vi3

Release 1.1:

Figure A-3: Version History of Ul Subsystem

1. Load the source code for the Ul system and record it in the development database.

a4 CMU/SEI-88-TR-3

V1.2
Vi3 vig
by Team 1 by Team 1
programmer #1 programmer #2

V1.5

by Team 1

Leader
Clspec SUspec ClSspecabody AIMS gpecabody

I 5\\\\\\\\D.\\\\\\\\\\D SN NNNANANNNAN
A l SAA I P h A LA LAL LA
~ I VLRI

\\Ill N

Figure A-4: Version History of CLI

Vi
V1.2 V1.3
by Team 2 by Team 2
V1.4
by Q/A Team

f I
SARANAAN NN D ARANNANNNNNNNNNAN E]
RN I I T atEenenY O T T T NN AT}

Figure A-5: Version History of SM

(Version histories and configuration threads for Ul, CLI, and SM are diagramed in
Figures A-3, A-4, and A-5.) If the CM experiment has been completed, use its source

code configuration of Ul as Release 1.0.

PERFORMANCE MEASUREMENT: Record the storage cost for Ul source.

ACTIVITIES: Pl-1.a

CMU/SEI-88-TR-3

85

Customer Del. User Manual Ul executable Release note
V1.0 Rel 1.0
release 1.0 . .
V1.1 Rel 1.1
release 1.1 . ° .

Figure A-6: Customer Deliverable

Product Ul Customers (CU)
i
I | cu1 Cu?2
Manager Manager
Product Enhancement Product Maintenance
(MPE) (MPM)
System Q/A team Documentation Team 1(T1): Team 2(T2): Team 3 (T3)
Analyst (QA) team (DOC) leader
(SA) (TIL)
'___]__| prog #1 prog 82
(T21) (T22)
prog n prog 2
(T11) (T12)
(T12suc)

Figure A-7: Organizational Structure

QUESTIONS: P2b

. Create a design document for each of the three subsystems of UI'S and enter them

into the development database as versions. The purpose is to demonstrate the ability
to relate and trace documents, which, in some environments, requires placing
pointers in the document’s content (the text, for example).

PERFORMANCE MEASUREMENT: Record the storage cost for the design and for
traceability relations.

ACTIVITIES: Pl-1.a
QUESTIONS: P2b, P2i

. Relate design documents (their final versions) to Release 1.0 of the Ul source code to

represent traceability.
ACTIVITIES: PI-1.a, PDM-1b

SContant is irrelevant.

86

CMU/SEI-88-TR-3

report #2task

T3: 1 person ’

-
L =

report #6,7 tasks

report #3,4tasks

report #2 fix $ fix
in source & unit test
4 weeks |
QA: 1 person ’
TE 2 poveons l #6 fix | subsystem integration &
fix in source & unit test "] acceptance testing
each fix separatel | customer deliverable
- ¥l #7 fix packaging
5 weeks I >
5 weeks I
4
T1: 3 persons I
change design & code; :
integrate changes & test #3,4 fix
8 weeks I
DOC: 1 person I
design update user manual =
document manual
revision —W‘ revision

Figure A-8: Initial Global Plan

customer
deliverable

to customer

approve
release

4. Create a user manual document, Version 1.0, for UL1® Enter it into the development
database, and relate it to Release 1.0 of Ul. :

'®Content is irrelevant for this experiment, other than a reference to CLI.

CMU/SEI-88-TR-3

87

PERFORMANCE MEASUREMENT: Record the storage cost for the user manual.
ACTIVITIES: Pl-1.a
QUESTIONS: P2b

5. Package up the executable code and the user manual as a customer deliverable,
Release 1.0.
PERFORMANCE MEASUREMENT: Record the storage cost for the deliverable.
ACTIVITIES: Pl-1.a

QUESTIONS: P2b

6. Initialize calendar with work hours, work days, holidays.
ACTIVITIES: PPM-1.a

7. Enter persons as available resources for the project. Different individuals have differ-
ent qualifications (analysis, documentation, management, etc.); see Figure A-7 for
details. Enter planned vacation for documentation person during second week after
detailed plan has been approved.

ACTIVITIES: PPM-1.a

8. Carry out system administrative initialization such as default printers, report formats.
Make use of whatever support the environment offers in grouping tools or creating
logical subsets of the environment for specific users.

PERFORMANCE MEASUREMENT: [f work areas are set up at system initialization time,
record elapsed time and space to create a logical work area for a member of one
team.

ACTIVITIES: PPM-1.3, PI-2.3, PI-2.b, Pl-2.c

QUESTIONS: F4h, P1f, P2f

A.2.2. The Customers

The two customers, CU1 and CU2, are using Ul Release 1.0, encounter problems, and
submit error reports. They are informed of the treatment of these reports, and will receive
the new release with the expected bug fixes.

1. Customer CU1 submits four error reports regarding Ul Release 1.0 to the Ul cus-
tomer service address CS.Ul@<Company>. (The actual text of the ermror reports is
not relevant for the purpose of this experiment, uniess the environment provides spe-

cial features for content processing that should be highlighted as part of the
evaluation.) ’

2. Customer CU2 submits four error reports regarding Ul Release 1.0.

3. Customers receive and examine responses regarding treatment of the submitted re-
ports.

4. Customers receive a release notice for Ul Release 1.1, which indicates changes in
the new system. They try to relate the information in this document to the submitted

error reports and earlier responses. Customers request actual delivery of Release
1.1.

5. Customer CU2 checks on status of his first error report (report #5). The initial re-
sponse had stated that it would be handled in an enhancement release. Customers
receive delivery of Ul Release 1.1.

ACTIVITIES: PDM-2.b
QUESTIONS: F5e

88 CMU/SEI-88-TR-3

A.2.3. The Manager for Product Maintenance
This individual is responsible for handling error reports received by customer service.

1. Generate a report of error reports (online and hardcopy).
ACTIVITIES: PDM-2.b

2. Initiate error report analysis task for system analyst and request a response within
five days.

3. Initiate task to QA to adjust QA plans for maintenance release (Release 1.1) and to
define a release note document format.
PERFORMANCE MEASUREMENT: To test the minimal overhead due to planning activities,
consider the trade-ofts, on the one hand, of carmrying out a planning step with resource
allocation or, on the other hand, of assuming that the manager does informal
resource allocation negotiation with QA and the system analyst.

4. Receive recommendations from system analyst, respond to customer about report #5
by recommending its accommodation in the next enhancement release (Release 2.0),
and inform manager of enhancement project. Approve recommended change re-
quests.

PERFORMANCE MEASUREMENT: Note responsiveness of change management facilities.
ACTIVITIES: PDM-2.2
QUESTIONS: P3d

5. Turn remaining recommendations into an initial global plan (see Figure A-8).

a. Define work packages in the initial WBS for three maintenance teams, a docu-
mentation group, and a QA group.

b. Estimate man-days, number of resources (persons), number of days, number of
changed lines of code.

c. Perform a cost estimation and set up a budget for the project as well as for teams.
d. Work out an initial global schedule.

e. Generate a document containing the initial global plan. If possible, generate dif-
ferent views of the plan information, e.g., PERT chart, work package listing,
resource chart.

f. Retain a version of the plan as part of the project history.

PERFORMANCE MEASUREMENT: For each sub-step above, record the responsiveness of
the tool or facility used in plan development. Record the storage cost of each object
in the global plan: WBS, schedule, PERT chart, cost estimate, etc. Note how long a
critical path analysis takes as an indication of interactiveness.

ACTIVITIES: PPM-1.b, PPM-1.¢c, PPM-1.d, PPM-1.e, PPM-1.g, PPM-1.i

QUESTIONS: F2a, F2b, P2a, P3a, P3f, S4

6. Issue tasks to the documentation group, the QA group, and the three maintenance
teams for plan refinement and feedback. Teams 2 and 3 and Documentation are
requested to confirm their aspect of the plan. Team 1 and QA are requested to refine
their part of the plan.

ACTIVITIES: Pl-1.c

CMU/SEI-88-TR-3 89

7. Merge refined plans from teams into a global plan. Perform consistency checks on
the new version of the plan: budget overrun, schedule overrun, overassignment of
people, etc.

ACTIVITIES: PPM-1.h

QUESTIONS: F2¢, F2f, F2g

8. Save the new version of the plan as project history. Generate a document containing
the plan. If possible, generate a report highlighting changes in the two versions of the
plan.

ACTIVITIES: PPM-1.i

QUESTIONS: F2d

9. Approve the plan. Inform customers of release schedule for error reports being
handled by Ul Release 1.1. Inform teams to proceed according to approved plan,
e.g., by issuing tasks. Set up access control so that only the team responsible for a
system part has "modify" access rights, while others have only read access to the
specification. (Modifying the specification of a part requires manager approval.) In
the case of Team 1, inform the team leader, who in turmn will issue the tasks to the
team members.

PERFORMANCE MEASUREMENT: Record elapsed time for plan instantiation. Record
storage cost of plan instances. |f work areas are set up when tasks are issued,
record elapsed time and space to create a logical work area for a member of one
team.

ACTIVITIES: PPM-1.1, PI-1.b, Pl-1.c

QUESTIONS: F2h, F3a, F3b, F3d, F3f, F4i, P1a, P2b, P2f

10. Generate first monthly progress report. Produce summary report as well as complete
report of all views supported by the project management software. Record progress
report in project history.

PERFORMANCE MEASUREMENT: Record elapsed time and storage cost to produce re-
ports and get project statistics.

ACTIVITIES: PPM-2.3, PPM-2.b, PPM-2.c, PPM-2.d, PPM-2.e

QUESTIONS: P1b, P2¢c, P2h, P3h

11. Receive notice that personnel change in Team 1 causes tasks on critical path to slip.
In the process of what-if analysis, query the status of the project (teams, tasks).
Generate a report highlighting the plan changes. Determine that no slippage is nec-
essary if new team member, T12suc, does not participate in design review. (And
consider how the plan would be changed if it were necessary to increase the number
of working hours or add staff to the project.) Inform leader of Team 1 to reflect this
fact in his plan execution. Record the plan revision in the project history.
PERFORMANCE MEASUREMENT: Record elapsed time for status query.

ACTIVITIES: PPM-3.a, PPM-3.b, PPM-3.¢c, PPM-3.d, PPM-3.e, PPM-3.k, PI-3.a, PX-1.a
QUESTIONS: F2e, F3b, F3c, F3e, F4a, P1i

12. Consider other changes in the project. These include changes in work breakdown or
task structure, changes in schedule, changes in project structure, changes in product
deliverables, adjustments to cost parameters based on actual data, and changes in
computing resources.

PERFORMANCE MEASUREMENT: Record storage cost of plan alternatives. Note respon-
siveness of system when context switching between alternatives.

ACTIVITIES: PPM-3.f, PPM-3.g, PPM-3.h, PPM-3.i, PPM-3,j, PI-3.b, PI-3.c, Pi-3.d
QUESTIONS: F3d, P2g, P3g

90 CMU/SEI-88-TR-3

13. Generate second monthly progress report. Perform a trend analysis which should

14.

18,

16.

7.

show that delivery of a design document to the Documentation group slipped, but that
the schedule is not affected. Record progress report in project history.

PERFORMANCE MEASUREMENT: Record elapsed time to process progress data for trend
analysis.

ACTIVITIES: PPM-2.3, PPM-2.b, PPM-2.c, PPM-2.d, PPM-2.e

QUESTIONS: F2b, F4a, F4e, P1e

Receive customer release from QA and approve it for release. Generate a report
with statistics on project execution (e.g., computer utilization or lines of code
changed) to mirror the organization’s concern for metrics.

PERFORMANCE MEASUREMENT: Note responsiveness of communication.
QUESTIONS: F3g, F4e, F5f, P3b

Generate distribution list based on filed error reports that have been handled by this
release. Distribute release notice to customers.

ACTIVITIES: PDM-2.b, PDM-2.c, PDM-4

Invite all project members to a release completion party.
ACTIVITIES: PX-1a

Distribute customer delivery Release 1.1 to responding customers.
ACTIVITIES: PDM-4

A.2.4. The System Analyst

The system analyst receives the collection of error reports, analyzes them and the source

code of the corresponding release, and-provides recommended actions to the manager
for each problem repont.

1.

For error report #1, prepare and send a response to customer indicating that the
reported item is not an error in the Ul system.

ACTIVITIES: PDM-2.a, PDM-2.b

. For error report #2, indicate a recommended change to VT with an indication of the

complexity of the change.

. For error report #3, indicate a recommended change to CLI package str_utilities with

an indication of the complexity of the change.

. For error report #4, examine the user manual, trace to the source code of CLI, ex-

amine its related design document, and recommend a change to the design, source
code, and user manual. The affected package is command_interpreter.

PERFORMANCE MEASUREMENT: Record elapsed time to use the traceability relations.
ACTIVITIES: PDM-1.a
QUESTIONS: F4j, F5a, P1d

. For error report #5, indicate that the reported item should be handled as an enhance-

ment.

.For error report #6, indicate a recommended change to SM package

window_manager with an indication of the complexity of the change.

.For error report #7, indicate a recommended change to SM package

viewport_manager with an indication of the complexity of the change.

CMU/SEI-88-TR-3 91

8. For error report #8, indicate that the reported item is the same as reported in #2.

9. Pass recommendations for error reports to manager (if possible, in the form of pro-
posed change requests).

PERFORMANCE MEASUREMENT: Record storage cost of change control information.
AcTIvITIES: PX-1.3, PX-1.c, PDM-2¢
QUESTIONS: F4g, F5e, P2d

A.2.5. Team 1

This team has three members: a leader and two programmers. It is responsiblie for the
packages in UI_CLI.

1. Team leader receives global plan from manager, refines it and assigns people to
tasks, and sends a detailed plan back to manager.

PERFORMANCE MEASUREMENT: Record elapsed time to create a task. If work areas

are set up by programmers, record elapsed time and space to create a logical work
area for one programmer.

ACTIVITIES: PPM-1.f, PX-1.a
QUESTIONS: F4d, F4e, F4i, P1g, P2f

2. Team leader accepts tasks 3 and 4 from manager, sends 4 to programmer #1 and 3
to programmer #2.

PERFORMANCE MEASUREMENT: Note responsiveness of communication.
ACTIVITIES: PX-1.a
QUESTIONS: F4b, F4d, F4e, P3c

3. Programmer #1 reviews bug report in 4 and begins design change. Programmer #2
begins change to code.

PERFORMANCE MEASUREMENT: Record the elapsed time to bring modules into work
area.

QUESTIONS: F5e, P1j

4. Leader reports progress and resource consumption at end of week 2.
PERFORMANCE MEASUREMENT: Record elapsed time to create report.
ACTIVITIES: PX-1.c

QUESTIONS: F3e, F4d, F4e, P1b, S1

5. Programmer #2 quits the team in week 3 of his assignment. Team leader requests
manager to assign a new employee to that task and gives estimate of slippage
caused by replacement of personnel. Receives approval from manager.

PERFORMANCE MEASUREMENT: Note responsiveness of change procedures.
ACTIVITIES: PI-3.3, PX-1.3, PX-2.3, PX-2.b
QUESTIONS: F3d, F3e, P3d

6. Team leader uses access control mechanisms to grant the new programmer

(T12suc) the same access rights to the source, designs, etc. that the ex-programmer
(T12) had. c

PERFORMANCE MEASUREMENT: Note responsiveness of access control.
QUESTIONS: F3d, F4c, P3e

7. Programmer #1 finishes design change (as approved by team).

8. Design review by entire team.

92 CMU/SEI-88-TR-3

9. Team approves design change and sends document to Documentation group.
ACTIVITIES: PX-1.a
QUESTIONS: F4e, F4g, FSe

10. Programmer #1 changes code, tests it, and then passes new version to leader.

11. New programmer #2 completes change to code, tests it, and then passes new ver-
sion to leader.

12. Leader reports progress and resource consumption at end of week 6.

13. Leader integrates changes, tests, and notifies the two programmers of successful
test. Approves new release of UI_CLI and sends it to QA. Notifies manager.

PERFORMANCE MEASUREMENT: Record total storage space of messages for team

leader, programmer #1, programmer #2. Record elapsed time for notification of task
completion.

ACTIVITIES: PX-1.a, PX-1.c
QUESTIONS: F4c, F4d, F4g, F5e, P1h, P2e

A.2.6. Team 2

This team has two members who work semi-independently. They are responsible for the
packages in UI_SM.

1. Receives global plan from manager and sends back confirmation.

2. From task list [é 7] sent by manager, programmer #1 chooses task 6.
ACTIVITIES: PX-1.3, PX-1.b
QUESTIONS: F4b

3. From task list [6 7] sent by manager, programmer #2 chooses task 7.

4. Programmer #2 attempts a direct change to UI_VT. This is an invalid access request
and should be flagged by the system. If the attempt is denied, consider programmer
#2 sending a change request to Team 3.17

PERFORMANCE MEASUREMENT: Note action of system.
ACTIVITIES: PX-1.b, PX-2.b
QUESTIONS: F4d, F4j, F5¢c, S3

5. Both programmers report progress and resource consumption at end of week 2.

6. Programmer #1 makes change to code, tests, sends new version to QA.
(Programmer #2 is working in parallel and should not see the new version.)
ACTIVITIES: PX-1.c
QUESTIONS: F5j

7. Programmer #2 makes change to code, tests, sends new version to QA. Notifies
manager.

ACTIVITIES: PX-1.¢c

7For this experiment, however, programmer #2 proceeds without changes to UI_VT.

CMU/SEI-88-TR-3 93

A2.7. Team 3
This individual is responsible for packages in Ul_VT.

1. Receives global plan from manager and sends back confirmation.

2. Accepts task 2 from manager.
QUESTIONS: F4b

3. Makes change to code and tests.

4. Reports progress and resource consumption at end of week 2.

5. Passes new release of UI_VT to QA. Notifies manager.
ACTIVITIES: PX-1.c

A.2.8. Documentation Group

1. Receives plan from manager and sends back confirmation.
ACTIVITIES: PX-1.3, PX-1.c
QUESTIONS: F4f

2. Takes one-week vacation, as planned. Upon his return, he wants latest status of his
involvement irr project.

ACTIVITIES: PPM-3.e, PX-1.a
3. Accepts design document changes from Team 1.

4. Updates user manual and releases it to QA.
ACTIVITIES: PX-1.C

A.2.9. QA Group

1. Receives task from manager. Defines a release note format (or calls up a template

from a library) as the procedure for accepting a maintenance release. Adjusts QA
plans for new release.

ACTIVITIES: PDM-3.a, PDM-4
QUESTIONS: F5a, F5b, F5¢, F5d, F5f, F5g, F5h

2. Refines plan and sends it back to manager.
QUESTIONS: F5i

3. Receives two (independent) fixes from Team 2. Performs acceptance test on UI_SM.
Integrates this change into the subsystem.

ACTIVITIES: PDM-3.b
QUESTIONS: F5f

4. Receives one fix from Team 3. Performs acceptance test on UI_VT. Integrates
these changes into the subsystem.

ACTIVITIES: PDM-3.b
QUESTIONS: F5f

5. Receives two (bundled) fixes from Team 1. Performs acceptance test on Ul_CLI and

checks new source against coding standards. Integrates these changes into the
subsystem.

94 CMU/SEI-B8-TR-3

PERFORMANCE MEASUREMENT: Record the elapsed time required for the standards
checking tool.

ACTIVITIES: PDM-3.b
QUESTIONS: F5f, Pic

6. Receives new user manual from Documentation group.
ACTIVITIES: PDM-3.b

7. Consider how the QA group would report to the developers if they discovered a prob-
lem in the newly-generated document.

ACTIVITIES: PDM-2.¢
QUESTIONS: F5i

8. Performs regression test on subsystem.
ACTIVITIES: PDM-3.c
QUESTIONS: F5¢g

9. Creates a customer deliverable, Release 1.1, which consists of the latest executable
code and user manual plus a release note (see Figure A-6), and informs manager.
ACTIVITIES: PX-1.a, PDM-4
QUESTIONS: F3e, F4a, F4d, F4g, S2

A.3. Design and Coding

This generic experiment will exercise a subset of activities inherent to detailed design and
code development and translation. The hypotheticai setting is one where a small team is
tasked with the creation of vector and matrix-handling module(s). The matrix and vector
example used here borrows heavily from Chapter 3 of Habermmann and Perry
[Habermann 83].

Before presenting the generic experiment step by step, a global view of the experiment
will be summarized. Four figures are provided to illustrate the design and development
states at various stages in the experiment. Booch diagrams will be used for this purpose
[Booch 83].

The first step of the experiment creates a library named ADA_LIB which will house Ada
program segments that may be copied when needed throughout the body of the exper-
iment.

The following steps represent a summary of the generic experiment.

1. Set up experiment.
2. Identify objects and operations.

3. Create package specifications for packages named VECTOR_MANAGEMENT and
MATRIX_MANAGEMENT.

4. Design subprogram control flows, identify subprogram interdependencies, and define
subprogram specifications local to each package body.

5. Create package body for VECTOR_MANAGEMENT.

6. Create main procedure named VEC_MAIN in a separate program library named
TEST_LIB to test pairwise vector multiplication.

CMU/SEI-88-TR-3 95

VECTOR-MANAGEMENT

(scAArR)
(_Vvector)
| Add_Vectors |
| ™muit _fV]ectors |
| subt \l/actors |
| Div_Vlectors |
| Inner_lProd 1
[Scal_VetI:_Mult |
!
MATRIX.MANAGEMENT

C MATlnlx)

| Mult_Matrices |

) |
| Mat_Vec_Muit |

|
| Scal_Vec_Muit |
-

Figure A-9: Preliminary Package Design

7. Create package body for MATRIX_MANAGEMENT.

8. Create a main procedure named MAT_MAIN in program library TEST_LIB to test
matrix-vector muiltiplication.

9. Modify package specifications and bodies and examine retransiation behavior.

The experimental steps for the design and development generic experiment are detailed
below. It should be noted that the environment should always be used to the maximum
extent. Optimization of environment usage supersedes the generic experiment instruc-

tions.

The following conventions are used in the generic experiment:

Construct Typeface Examples
Commands: lower case bold a.mklib

Filenames: bold Jogin, matrix_body.a
Directories: boid PROJECT_LIB

Ada Procedures UPPER CASE BOLD TEST_HARNESS

and Packages:

96

CMU/SEI-88-TR-3

1. Set up experiment
a. Create directory, named EXP_LIB, in which the experiment will be performed.

b. Create a subdirectory under the experimental directory, named ADA_LIB, to
house Ada source code fragments which will be required throughout the exper-
iment.

c. Create, as text, the source code fragments and data files in ADA_LIB. Appendix
5.A exhibits these files by file name. (These exhibits will either be typed by hand
or will have been previously created in another directory).

d. Develop a command named recordit to collect general experimental data.
e. Develop a command named time to collect experimental timing data.

2. ldentify objects and operations (Figures A-9, A-10, and A-11).

Object In
’ > Object out

Object In
Figure A-10: Object-Operatioﬁ Model

3. Create package specification(s).
a. Create program library named PROJECT_LIB. Measure the time it takes to cre-
ate program library. Measure disk utilization for newly created program library.

b. Create package specification for a package named VECTOR_MANAGEMENT.
i. Enter the package specification, which is seeded with errors, exactly as it is
shown in Exhibit 1.1a.

ii. Display and correct transiation errors.

iii. Translate into program library PROJECT_LIB. Measure elapsed and CPU
times for transiation.

iv. Compare corrected package specification to Exhibit 1.1b. Note that the file
resides in ADA_LIB. Correct any differences and retranslate if necessary.
Measure program library disk utilization. Measure disk utilization attributable
to the package specification.

c. Create package specification for a package named MATRIX_MANAGEMENT.
i. Enter the package specification, which is seeded with errors, exactly as it is
shown in Exhibit 1.2a. '

ii. Display and correct translation errors..

CMU/SEI-88-TR-3 97

Object Object
Operands Results
Operation Scalar Vector Matrix Scalar Vector | Matrix

Add Vectors X X
Multiply Vectors X X
Subtract Vectors X X
Divide Vectors X X
Inner Product X X
Scalar-Vector Mult. X X X
Matrix-Matrix Mult. X X
Matrix-Vector Mult. X X X
Scalar-Matrix Mult. X X X

Figure A-11: Objects and Operations

iii. Translate into program library PROJECT_LIB. Measure elapsed and CPU
times for transiation.

iv. Compare cormrected package specification to Exhibit 1.2b. Correct any dif-
ferences and retranslate if necessary. Measure program library disk utiliza-
tion. Measure disk utilization attributable to the package specification.

4. Design subprogram control flows, identify subprogram interdependencies and define
subprogram specifications local to each package body (Figure A-12).

5. Create package body for VECTOR_MANAGEMENT.
a. Generate package body of VECTOR_MANAGEMENT using a null body gener-
ator if available. Otherwise use vector_body_null in ADA_LIB.

b. Modify the pairwise vector multiplication function.
i. Enter the function body, which is seeded with errors, exactly as it is shown in
Exhibit 1.3a.

ii. Display and correct translation errors.
iii. Translate into program library PROJECT_LIB.

iv. Compare corrected package body to Exhibit 1.3b. Correct any differences and
retranslate if necessary. Measure program library disk utilization. Measure
disk utilization attributable to the package body.

6. Create a main procedure named VEC_MAIN in a separate program library to drive
pairwise vector multiplication (Figure A-13).

a. Create a program library named TEST_LIB from within the directory EXP_LIB
that will contain compilation units that will have dependencies upon units in
PROJECT_LIB.

b. Create a test main program named VEC_MAIN that will be translated into
TEST_LIB.

98 CMU/SEI-88-TR-3

N VECTOR_MANAGEMENT

(scaar)

(vectoR)

r Add_!/ectors]

’I Mult__Vlectors]
1

| Subt Vectors
1
I Div_Vectors
1
;l Inner_Prod
1
| Scal_Vec_Muit

S S

|
MATRIXiMANAGEMENT (subunit)
1
(wmamRx)
GETCD
Mult_Matrices |
| GETROL
>[Mat_Vec_Mult I

l Scal_Vec_Mult l
L

Figure A-12: Subprogram Interdependencies

i. Create the procedure VEC_MAIN, which is seeded with errors, by copying it
from ADA_LIB. Refer to Exhibit 1.4a.

ii. Display and correct translation errors. Display a cross-reference map.
iii. Translate into program library TEST_LIB.

iv. Compare comrected package specification to Exhibit 1.4b. Correct any dif-
ferences and retransiate if necessary. Measure program library disk utiliza-
tion. Measure disk utilization attributable to the procedure.

c. Create executable module. Execute. Halt execution. Resume execution. Time
module creation. Observe execution error message(s).

d. Determine the cause of the execution error by first browsing VEC_MAIN and
noticing that the variable v3 is of TYPE VECTOR(1..4). Examine the statement
invoking pairwise vector multiplication: product3 := v3*u3. Then browse the pair-
wise vector multiplication function and notice that there is no check for compatible
dimensions.

7. Create package body for MATRIX_MANAGEMENT.
a. Create package body for MATRIX_MANAGEMENT by copying existing version
from matrix_body_errors in ADA_LIB. Correct all errors except for the excep-
tion declaration, which will be corrected in the next step.

CMU/SEI-88-TR-3 99

VEC_MAIN

\
VECTOR_MANAGEMENT

C)

Figure A-13: Vector Multiplication Test Harness

b. Substitute for the VECTOR_MANAGEMENT package body a revised version
copied from vector_body_excptn in ADA_LIB. This version contains a non-null
INNER_PROD function body and a test for incompatible dimensions in the pair-
wise vector multiplication function. Add "Dimension_Error : exception;" to the
package specification and retranslate.

¢. Create function body for GET_ROW and null body for GET_COL by copying from
get_row in ADA_LIB but do not transiate until so directed in a subsequent step.
Retranslate MATRIX_MANAGEMENT package body into PROJECT_LIB.

8. Create a main procedure named MAT_MAIN to drive matrix-vector multiplication.

a. Create main procedure by copying matrix_main from ADA_LIB. Translate main
procedure into program library TEST_LIB. List the compilation unit names and
types in program library TEST_LIB and PROJECT_LIB. List package and sub-
program interdependencies. Determine the completeness and recompilation
status of both program libraries.

b. Create executable module. Execute. Time module creation.

9. Modify package specifications and bodies and examine system retranslation behavior
using MAT_MAIN as a main procedure (Figure A-14).

a. Change a package specification by removing a function specification that no other
package depends upon: Delete pairwise vector multiplication specification and
store temporarily in a separate location for subsequent reuse. Translate. Create
an executable module. Observe system retransiation behavior.

100 CMU/SEI-88-TR-3

.

MAT_MAIN
\ 4
VECTOR_MANAGEMENT MATRIX_MANAGEMENT
) C)
.] L . |
| |]

Figure A-14: Matrix Multiplication Test Hamess

. Change package body by changing an algorithm in a subprogram body:

Change INNER_PROD body so that it no longer uses pairwise vector multipli-
cation. Translate into PROJECT_LIB. Create executable module. Observe sys-
tem retransiation behavior.

. Change package body by deleting an unused subprogram body.

Delete pairwise vector multiplication function body and store temporarily in a sep-
arate location. Translate into PROJECT_LIB. Create executable module.
Observe system retranslation behavior.

. Change package body by adding a subprogram body:

Add back pairwise vector multiplication function body. Translate into
PROJECT_LIB. Create executable module. Observe system retransiation
behavior.

. Change a package specification by adding a subprogram specification:

Add back pairwise vector muitiplication function specification. Translate into
PROJECT_LIB. Create executable module. Observe system retransiation be-
havior.

. Change package body by adding comments:

Add comments to package body of VECTOR_MANAGEMENT. Translate into
PROJECT_LIB. Create executable module. Observe system retranslation
behavior.

CMU/SEI-88-TR-3 101

g. Add comments to package specification of VECTOR_MANAGEMENT. Translate

into PROJECT_LIB. Create executable module. Observe system retransiation
behavior.

A.4. System Administration

This is a two-step phase in which the environment-independent evaluation experiments
are first developed, and then a list of specific, applicable evaluation questions for each
experiment is assembled from the general questions outlined in Step 2 of Phase 2.

A.4.1. System Management Experiment #1

The purpose of this generic experiment is to investigate the procedures supporting the
installation of an Ada software environment. Specifically this experiment will address all
aspects of installing an Ada environment, including loading the software from the release
media, integrating the software with the (probably existing) underlying operating environ-
ment, and exercising the installed Ada software environment.

Note: All data file size recordings and all timing measurements (indicated below in italics)
should be logged into a file named Recordings in the experiment's home directory. Fur-
thermore, each of the logged measurements should be labeled with a descriptive tag.

1. Experiment setup
a. Login to underlying operating environment as the system administrator.
b. Create subdirectory in which experimental results will be stored.
c. Establish environment variables to be used in the experiment.
d. Develop command named record to collect data file size measurements.

e. Develop command named timelt to collect execution time measurements for any
environment command.

2. Perform pre-installation operations. Measure time taken to perform each pre-
installation step.

a. Create special accounts (first installation only).

b. Back up appropriate disks.

c. Copy environment configuration files to aid in a re-installation (re-installation
only).

d. Shutdown currently executing Ada environment software (re-installation only).

3. Load environment software from the release media. Measure time to load the Ada

environment software. Record the amount of disk space consumed by the Ada envi-
ronment software.

4. Integrate with existing (underlying) operating environment. Measure time taken to
successfully integrate the Ada environment software into the existing operating envi-
ronment by recording the time taken for each of the following activities.

a. Reconfigure (tune) underlying operating environment for Ada environment opera-
tion

102 CMU/SEI-88-TR-3

* Modify system generation parameters.
¢ Install sharable pages of environment software.

o Establish appropriate page and swap space.
» Reboot machine.

b. Install online help files.

c. Establish aliases or symbols for execution access to the Ada environment soft-

ware (e.g., the symbol ADA when used will invoke the environment's Ada
compiler).

d. Establish access control privileges for the Ada environment software (i.e., grant
read and execute rights to users of the environment).

e. Modify system-wide startup command procedures to initialize the Ada environ-
ment software automatically upon system reboot.

f. Invoke Ada environment software and verify that it is executing.

e Copy configuration files to avoid the need for re-creating them from scratch
(re-installation only).

¢ Boot the software.

e Logoff .

5. Perform acceptance test(s) for the installed Ada environment (i.e., invoke Ada envi-
ronment software and verify that it is installed correctly). Measure time taken to

perform the acceptance test(s) by recording the time taken for each of the following
activities.

a. Log in to underlying operating environment as an Ada environment user. Also, if
required, log in to the Ada environment.

b. Create a subdirectory named ACC_TEST for acceptance testing purposes.

c. Create an Ada program library named ADA_LIB in the ACC_TEST directory to
be used during the acceptance tests.

d. Verify the online Ada environment help facility works by asking for assistance on
using the help utility.

e. Query the online Ada environment help facility regarding the process of creating,
editing, compiling, linking, and executing an Ada program.

f. Create, using the standard text editor, a simple Ada program named hello (within
the ACC_TEST directory) containing the following code:

with TEXT_IO;
procedure HELLO TEST is
begin
TEXT_IO.PUT_LINE ("Hello world!");
end HELLO_TEST;

g. Submit the hello main program as a compilation unit to be compiled into the
ADA_LIB program library.

h. Link the hello main program with the Ada runtime and produce an executable
load module named Hello_Test.

CMU/SEI-88-TR-3 103

i. Execute the Hello_Test program.
j- Remove the ADA_LIB program library.
k. Remove the ACC_TEST directory.

l. Log off the system.

A.4.2. System Management Experiment #2

This experiment assumes that the environment software has already been successfully
installed. The purpose of this generic experiment is to investigate an environment's sup-
port of user account management activities. As is always the first step, a user must have
an account before being able to access the environment software. In this vein, the steps
in this experiment will investigate the operations of creating, deleting, modifying, copying,
displaying, and verifying user account information.

1. Experiment setup

a. Log in to environment as the system administrator.
b. Create subdirectory in which experimental results will be stored.
c. Establish environment variables to be used in the experiment.

2. Create environment user account group named ENV_USER. Measure time taken to
create new user account group. Record file size increase caused by creating a new
user account group.

3. Create environment user account for John T. Smith; assume the last name is to be
used for the usemame, password, and pathname of the account's home directory.
Measure time taken to create new user account. Record file size increase caused by
creating a new user account.

4. Add user Smith to user group ENV_USER. Measure time taken to add new user to
an account group. Record file size increase caused by adding new user to an ac-
count group.

5. Copy Smith account characteristics into a new account for Thomas R. Jones; as-
sume the last name is to be used for the username, password, and pathname of the
account's home directory. Measure time taken to copy characteristics into a new
user account. Record file size increase caused by creating a new user account.

6. Copy Smith account characteristics into a default account named DEFAULT to be
used in the future for creating new environment accounts. Measure time taken to
copy characteristics into a new user account. Record file size increase caused by
creating a new user account.

7. Disable logins for the DEFAULT account. Measure time take to disable logins for an
account.

8. Display characteristics of the DEFAULT account. Measure time taken to dispiay
account characteristics.

8. Change account name of the DEFAULT account to be Env_User. Measure time
taken to modify one characteristic of a user account. Record file size increase
caused by modifying a characteristic of a user account.

104 CMU/SEI-88-TR-3

10.

11

12

13.

14,

15.

16.

17.

18.

19.

Display characteristics of the DEFAULT account. Measure time taken to dispiay
account characteristics.

. Modify account names as above (step 9) for the Smith and Jones accounts.

Measure time taken to modify one characteristic of a user account. Record file size
increase caused by modifying a characteristic of a user account.

Display characteristics of the Smith and Jones accounts. Measure time taken to
display account characteristics.

Create an account for Jane Doe using characteristics from the DEFAULT account;
assume the last name is to be used for the username, password, and pathname of
the account’s home directory. Measure time taken to copy characteristics into a new
user account. Record file size increase caused by creating a new user account.

Create working directories containing login/logout command procedures for the
Smith, Doe, and Jones accounts. Measure time taken to create initial account
directories.

Update any environment specific databases to grant Smith, Doe, and Jones access
to the environment software.

Verify the creation and correctness of the Smith, Doe, and Jones accounts (e.g., log
in and edit a text file from these accounts).

Revoke environment access from Jones account. Measure time taken to revoke
environment access from a user’s account.

Remove Jones account from the ENV_USER account group. Measure time taken to
remove user from an account group. Record file size decrease caused by removing
user from an account group.

Remove Jones account. Measure time taken to remove user account. Record file
size decrease caused by removing user account.

A.4.3. System Management Experiment #3

Unlike the others, this generic experiment is not a true experiment containing individual
steps and data collection, but is an assimilation of highly subjective questions aimed at
evaluating the issues of maintaining an Ada software environment. Specifically, these
questions will address the issues of maintaining current releases of the Ada environment
software, customer support and service, and archiving (and subsequent retrieving) the
Ada environment software and/or database elements.

Software Updates and Maintenance

1. What is the overall process for updating the environment software?

2.

3.

4.

5.

How frequent are new software releases?
Are new releases accompanied by release notes? Updating procedures?

Are new releases downward compatible? Are new releases upward compatible? Or
do they supersede all previous versions?

Can new release be installed within a multi-user environment or must the machine be
in single user mode?

CMU/SEI-88-TR-3 105

10.
T4
12

13.

. Can muiltiple versions of the environment be running simultaneously ?

. What is the procedure for fixing bugs that are uncovered between releases (object

code patches, new object code, entirely new software release)?

. Is patching of selected executable images supported? If so, is it facilitated via com-

mand procedures?

. Can patches be applied within a multi-user environment or must the machine be in

single user mode?

How éasy/difficult is it to update the environment software?

How much human intervention is required during the update procedure?
How easy is it to recover from errors during the update procedure?

How well is the update procedure documented?

Customer Service and Support

1.

2.

Newsletter? What is the frequency of publication?

Interest and/or user groups?

. Is there a dial-up computer number to access a database of previously encountered

bugs?

. Level of software support

Level 1 7 day, 12-24 hour phone service; prev<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>